Skip to main content

l p -norm Multiple Kernel Learning with Diversity of Classes

  • Conference paper
Knowledge Management and Acquisition for Smart Systems and Services (PKAW 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8863))

Included in the following conference series:

  • 786 Accesses

Abstract

Multiple Kernel Learning (MKL) can learn an appropriate kernel combination from multiple base kernels for classification problems. It is often used to handle binary problems. However, multi-class problems appear in many real applications. In this paper, we propose a novel model, l p -norm multiple kernel learning with diversity of classes (LMKLDC), for the multi-class multiple kernel learning problem. LMKL-DC focuses on diversity of classes and aims to learn different kernel combinations for different classes to enhance the flexibility of our model. LMKLDC also utilizes l p -norm (0 < p ≤ 1) to promote the sparsity. However, LMKLDC boils down to a non-convex optimization problem when 0 < p < 1. In virtue of the constrained concave convex procedure (CCCP), we convert the non-convex optimization problem into a convex one and present a two-stage optimization algorithm. Experimental results on several datasets show our model selects fewer kernels and improves the classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Lanckriet, G.R.G., Cristianini, N., Bartlett, P., Ghaoui, L.E., Jordan, M.I.: Learning the kernel matrix with semidefinite programming. The Journal of Machine Learning Research 5, 27–72 (2004)

    MATH  Google Scholar 

  • Bach, F.R., Lanckriet, G.R.G., Jordan, M.I.: Multiple kernel learning, conic duality, and the SMO algorithm. In: Proceedings of the Twenty-first International Conference on Machine Learning, vol. 6. ACM (2004)

    Google Scholar 

  • Rakotomamonjy, A., Bach, F.R., Canu, S., Grandvalet, Y.: SimpleMKL. Journal of Machine Learning Research 9(11) (2008)

    Google Scholar 

  • Kloft, M., Brefeld, U., Sonnenburg, S., Laskov, P., Müller, K.R., Zien, A.: Efficient and accurate l p -norm multiple kernel learning. NIPS 22(22), 997–1005 (2009)

    Google Scholar 

  • Xu, Z., Jin, R., Yang, H., King, I., Lyu, M.R.: Simple and efficient multiple kernel learning by group lasso. In: Proceedings of the 27th International Conference on Machine Learning, ICML, pp. 1175–1182 (2010)

    Google Scholar 

  • Xu, X., Tsang, I.W., Xu, D.: Soft margin multiple kernel learning. IEEE Transactions on Neural Networks and Learning Systems 24, 749–761 (2013)

    Article  Google Scholar 

  • Zien, A., Ong, C.S.: Multiclass multiple kernel learning. In: Proceedings of the 24th International Conference on Machine Learning, pp. 1191–1198. ACM (2007)

    Google Scholar 

  • Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support vector machine learning for interdependent and sturcutured output spaces. In: Proceedings of the 16th International Conference on Machine Learning (2004)

    Google Scholar 

  • Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-based vector machines. The Journal of Machine Learning Research 2, 265–292 (2002)

    MATH  Google Scholar 

  • Ye, J., Ji, S., Chen, J.: Multi-class discriminant kernel learning via convex programming. The Journal of Machine Learning Research 9, 719–758 (2008)

    MATH  MathSciNet  Google Scholar 

  • Kumar, A., Niculescu-Mizil, A., Kavukcuoglu, K., Daumé, H.: A binary classification framework for two-stage multiple kernel learning. arXiv preprint arXiv:1206.6428 (2012)

    Google Scholar 

  • Cortes, C., Mohri, M., Rostamizadeh, A.: Multi-Class Classification with Maximum Margin Multiple Kernel. In: Proceedings of the 30th International Conference on Machine Learning, ICML, pp. 46–54 (2013)

    Google Scholar 

  • Bach, F.R.: Consistency of the group lasso and multiple kernel learning. The Journal of Machine Learning Research 9, 1179–1225 (2008)

    MATH  MathSciNet  Google Scholar 

  • Szafranski, M., Grandvalet, Y., Rakotomamonjy, A.: Composite kernel learning. Machine Learning 79(1-2), 73–103 (2010)

    Article  MathSciNet  Google Scholar 

  • Nath, J.S., Dinesh, G., Raman, S., Bhattacharyya, C., Ben-Tal, A., Ramakrishnan, K.R.: On the Algorithmics and Applications of a Mixed-norm based Kernel Learning Formulation. In: NIPS, pp. 844–852 (2009)

    Google Scholar 

  • Chartrand, R.: Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Processing Letters 14(10), 707–710 (2007)

    Article  Google Scholar 

  • Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2008, pp. 3869–3872. IEEE (2008)

    Google Scholar 

  • Xu, Z., Chang, X., Xu, F., Zhang, H.: L 1/2 regularization: A Thresholding Representation Theory and a Fast Solver. IEEE Transaction on Neural Networks and Learning Systems 23(7) (2012)

    Google Scholar 

  • Rakotomamonjy, A., Flamary, R., Gasso, G., Ganu, S.: l p -l q penalty for sparse linear and sparse multiple kernel multitask learning. IEEE Transactions on Neural Networks 22(8), 1307–1320 (2011)

    Article  Google Scholar 

  • Smola, A., Vishwanathan, S.V.N., Hofmann, T.: Kernel methods for missing variables (2005)

    Google Scholar 

  • Girosi, F.: An equivalence between sparse approximation and support vector machines. Neural Computation 10(6), 1455–1480 (1998)

    Article  Google Scholar 

  • Schölkopf, B., Herbrich, R., Smola, A.J.: A generalized representer theorem. In: Proceedings of the 14th Annual Conference on Computational Learning Theory, pp. 416–426 (2001)

    Google Scholar 

  • Wang, L., Chen, S.: l 2,p -Matrix norm and its application in feature selection. arXiv preprint arXiv:1303.3987 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, D., Xue, H. (2014). l p -norm Multiple Kernel Learning with Diversity of Classes. In: Kim, Y.S., Kang, B.H., Richards, D. (eds) Knowledge Management and Acquisition for Smart Systems and Services. PKAW 2014. Lecture Notes in Computer Science(), vol 8863. Springer, Cham. https://doi.org/10.1007/978-3-319-13332-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13332-4_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13331-7

  • Online ISBN: 978-3-319-13332-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics