Skip to main content

Linked Production Rules: Controlling Inference with Knowledge

  • Conference paper
Knowledge Management and Acquisition for Smart Systems and Services (PKAW 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8863))

Included in the following conference series:

Abstract

A key insight in artificial intelligence, which has been the foundation of expert systems and now business-rule systems, is that reasoning or inference can be separated from the domain knowledge being reasoned about. We suggest that the knowledge acquisition and maintenance problems that arise, might result from too great a separation of knowledge and inference. We propose Linked Production Rules, where each rule evaluated directs the next step of inference and the inference engine has no meta-heuristics or conflict resolution strategy. We suggest that this loses none of the power of conventional inference but may greatly improve knowledge acquisition and maintenance since various Ripple-Down Rule knowledge acquisition methods, which have had some success in facilitating knowledge maintenance can be described as specific instances of Linked Production Rules. Finally the Linked Production Rule approach suggests the possibility of a generalized Ripple-Down Rule method applicable to a wide range of problem types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Grosof, B.: Prioritized conflict handling for logic programs. In: Logic Programming: Proceedings of the 1997 International Symposium, pp. 197–211 (1997)

    Google Scholar 

  2. OMG: Production Rule Representation (PRR). Object Management Group (2009), http://www.omg.org/spec/PRR/1.0

  3. Polit, S.: R1 and Beyond: AI Technology Transfer at Digital Equipment Corporation. AI Magazine 5(4), 76–78 (1984)

    Google Scholar 

  4. Soloway, E., Bachant, J., Jensen, K.: Assessing the maintainability of XCON-in-RIME: coping with the problems of a VERY large rule base. In: Proceedings of AAAI 1987, Seattle, pp. 824–829. Morgan Kaufmann (1987)

    Google Scholar 

  5. Clancey, W.J.: Situated Cognition: On Human Knowledge and Computer Representations (Learning in Doing - Social, Cognitive and Computational Perspectives). Cambridge University Press (1997)

    Google Scholar 

  6. Compton, P., Jansen, R.: A philosophical basis for knowledge acquisition. Knowledge Acquisition 2, 241–257 (1990)

    Article  Google Scholar 

  7. McCarthy, J.: Epistemological problems of artificial intelligence. In: International Joint Conference on Artificial Intelligence, January 1, pp. 1038–1044 (1977)

    Google Scholar 

  8. Compton, P., Horn, R., Quinlan, R., Lazarus, L.: Maintaining an expert system. In: Quinlan, J.R. (ed.) Applications of Expert Systems, vol. 2, pp. 366–385. Addison Wesley, London (1989)

    Google Scholar 

  9. Jacob, R., Froscher, J.: A software engineering methodology for rule-based systems. IEEE Transactions on Knowledge and Data Engineering 2(2), 173–189 (1990)

    Article  Google Scholar 

  10. Bachmann, R., Malsch, T., Ziegler, S.: Success and failure of expert systems in. different fields of industrial application. In: Ohlbach, H.J. (ed.) GWAI 1992. LNCS, vol. 671, pp. 77–86. Springer, Heidelberg (1993)

    Google Scholar 

  11. Stefik, M., Aikins, J., Balzer, R., Benoit, J., Birnbaum, L., Hayes-Roth, F., Sacerdoti, E.: The organization of expert systems, a tutorial* 1. Artificial Intelligence 18(2), 135–173 (1982)

    Article  Google Scholar 

  12. Clancey, W.J.: Heuristic classification. Artificial Intelligence 27, 289–350 (1985)

    Article  Google Scholar 

  13. Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N., Van de Velde, W., Wielinga, B.: Knowledge Engineering and Management: The CommonKADS Methodology. MIT Press, Cambridge Mass. (1999)

    Google Scholar 

  14. Zacharias, V.: Development and Verification of Rule Based Systems — A Survey of Developers. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2008. LNCS, vol. 5321, pp. 6–16. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Date, C.J.: What, not how: the business rules approach to application development. Addison Wesley, Reading (2000)

    Google Scholar 

  16. Forgy, C.R.: A fast algorithm for the many pattern/many object pattern match problem. Artificial Intelligence 19, 17–37 (1982)

    Article  Google Scholar 

  17. Linear Inferencing: High Performance Processing. An Oracle White Paper (February 2009)

    Google Scholar 

  18. Grosof, B.: Representing e-commerce rules via situated courteous logic programs in RuleMl. Electronic Commerce Research and Applications 3, 2–20 (2004)

    Article  Google Scholar 

  19. Compton, P., Jansen, R.: Knowledge in context: A strategy for expert system maintenance. In: Barter, C.J., Brooks, M.J. (eds.) Canadian AI 1988. LNCS, vol. 406, pp. 292–306. Springer, Heidelberg (1990)

    Google Scholar 

  20. Edwards, G., Compton, P., Malor, R., Srinivasan, A., Lazarus, L.: PEIRS: a pathologist maintained expert system for the interpretation of chemical pathology reports. Pathology 25, 27–34 (1993)

    Article  Google Scholar 

  21. Compton, P., Peters, L., Edwards, G., Lavers, T.G.: Experience with Ripple-Down Rules. Knowledge-Based System Journal 19(5), 356–362 (2006)

    Article  Google Scholar 

  22. Compton, P., Peters, L., Lavers, T., Kim, Y.-S.: Experience with long-term knowledge acquisition. Paper presented at the Proceedings of the Sixth International Conference on Knowledge Capture, KCAP 2011, Banff, Alberta, Canada (2011)

    Google Scholar 

  23. Sarraf, Q., Ellis, G.: Business Rules in Retail: The Tesco.com Story. Business Rules Journal 7(6) (2006), http://www.BRCommunity.com/a2006/n2014.html

  24. Benham, A., Read, H., Sutherland, I.: Network Attack Analysis and the Behaviour Engine. In: 2013 IEEE 27th International Conference on Advanced Information Networking and Applications (AINA), pp. 106–113. IEEE (2013)

    Google Scholar 

  25. Dani, M.N., Faruquie, T.A., Garg, R., Kothari, G., Mohania, M.K., Prasad, K.H., Subramaniam, L.V., Swamy, V.N.: Knowledge Acquisition Method for Improving Data Quality in Services Engagements. In: IEEE International Conference on Services Computer (SCC), Miami, pp. 346–353. IEEE (2010)

    Google Scholar 

  26. Kang, B.H., Compton, P.: Knowledge acquisition in context: the multiple classification problem. In: Proceedings of the 2nd Pacific Rim International Conference on Artificial Intelligence, Seoul, pp. 847–853 (1992)

    Google Scholar 

  27. Richards, D.: Two decades of Ripple Down Rules research. The Knowledge Engineering Review 24(2), 159–184 (2009), doi:10.1017/S0269888909000241

    Article  Google Scholar 

  28. Colomb, R., Chung, C.: Strategies for building propositional expert systems. International Journal of Intelligent Systems 10(3), 295–328 (1995)

    Article  Google Scholar 

  29. Colomb, R.M.: Representation of Propositional Expert Systems as Partial Functions. Artificial Intelligence 109, 187–209 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  30. Crawford, E., Kay, J., McCreath, E.: IEMS - the intelligent mail sorter. In: Sammut, C., Hoffmann, A. (eds.) Proceedings of the Nineteenth International Conference on Machine Learning (ICML 2002), Syndey, pp. 83–90. Morgan Kaufmann (2002)

    Google Scholar 

  31. Kim, Y.S., Compton, P., Kang, B.H.: Ripple-Down Rules with Censored Production Rules. In: Richards, D., Kang, B.H. (eds.) PKAW 2012. LNCS, vol. 7457, pp. 175–187. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  32. Kang, B.: Multiple Classification Ripple Down Rules (PhD thesis). UNSW (1996)

    Google Scholar 

  33. Brachman, R.J., Schmolze, J.G.: An Overview of the KL-ONE Knowledge Representation System. Cognitive Science 9(2), 171–216 (1985)

    Article  Google Scholar 

  34. Gaines, B.R.: Integrating Rules in Term Subsumption Knowledge Representation Servers. In: AAAI, pp. 458–463 (1991)

    Google Scholar 

  35. Nguyen, T., Perkins, W., Laffey, T., Pecora, D.: Checking an expert systems knowledge base for consistency and completeness. In: Proceedings of the 9th International Joint Conference on Artificial Intelligence, pp. 374–378 (1985)

    Google Scholar 

  36. Preece, A.D., Shinghal, R., Batarekh, A.: Principles and practice in verifying rule-based systems. The Knowledge Engineering Review 7(2), 115–141 (1992)

    Article  Google Scholar 

  37. Craw, S.: Refinement complements verification and validation. International Journal of Human Computer Studies 44, 245–256 (1996)

    Article  Google Scholar 

  38. Chandrasekaran, B.: Towards a taxonomy of problem solving types. AI Magazine, 9–17 ( Winter/Spring 1983)

    Google Scholar 

  39. Puppe, F.: Systematic introduction to expert systems: Knowledge representations and problem-solving methods. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Compton, P., Kim, Y.S., Kang, B.H. (2014). Linked Production Rules: Controlling Inference with Knowledge. In: Kim, Y.S., Kang, B.H., Richards, D. (eds) Knowledge Management and Acquisition for Smart Systems and Services. PKAW 2014. Lecture Notes in Computer Science(), vol 8863. Springer, Cham. https://doi.org/10.1007/978-3-319-13332-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13332-4_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13331-7

  • Online ISBN: 978-3-319-13332-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics