Skip to main content

Complexity of Promise Problems on Classical and Quantum Automata

  • Chapter
  • First Online:
Computing with New Resources

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8808))

Abstract

We consider the promise problem \(A^{N,r_1,r_2}\) on a unary alphabet \({\left\{ \sigma \right\} }\) studied by Gruska et al. in [21]. This problem is formally defined as the pair \(A^{N,r_1,r_2}=(A^{N,r_1}_{yes},A^{N,r_2}_{no})\), with \(0\le r_1\ne r_2<N\), \(A^{N,r_1}_{yes}={\left\{ \sigma ^n \ \mid \ n\equiv r_1 \mod N\right\} }\) and \(A^{N,r_2}_{no}={\left\{ \sigma ^n \ \mid \ n \equiv r_2 \mod N\right\} }\). There, it is shown that a measure-once one-way quantum automaton can solve exactly \(A^{N,r_1,r_2}\) with only \(3\) basis states, while any one-way deterministic finite automaton requires \(d\) states, \(d\) being the smallest integer such that \(d\mid N\) and \(d \not \mid (r_2-r_1) \mod N\). Here, we introduce the promise problem \({\textsc {Diof}}^{\,{a},N}_{r_1,r_2}\) as an extension of \(A^{N,r_1,r_2}\) to general alphabets. Even for this problem, we show the same descriptional superiority of the quantum paradigm over one-way deterministic automata. Moreover, we prove that even by adding features to classical automata, namely nondeterminism, probabilism, two-way motion, we cannot obtain automata for \(A^{N,r_1,r_2}\) and \({\textsc {Diof}}^{\,{a},N}_{r_1,r_2}\) smaller than one-way deterministic.

Partially supported by MIUR under the project “PRIN: Automi e Linguaggi Formali: Aspetti Matematici e Applicativi.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambainis, A.: The complexity of probabilistic versus deterministic finite automata. In: Asano, T., Igarashi, Y., Nagamochi, H., Miyano, S., Suri, S. (eds.) ISAAC 1996. LNCS, vol. 1178, pp. 233–238. Springer, Heidelberg (1996)

    Google Scholar 

  2. Ambainis, A., Beaudry, M., Golovkins, M., Kikusts, A., Mercer, M., Thérien, D.: Algebraic results on quantum automata. Theory of Comp. Sys. 39, 165–188 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambainis, A., Yakaryilmaz, A.: Superiority of exact quantum automata for promise problems. Information Processing Letters 112, 289–291 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambainis, A., Watrous, J.: Two-way finite automata with quantum and classical states. Theoretical Computer Science 287, 299–311 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bertoni, A., Carpentieri, M.: Regular languages accepted by quantum automata. Information and Computation 165, 174–182 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bertoni, A., Mereghetti, C., Palano, B.: Quantum computing: 1-way quantum automata. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 1–20. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Bertoni, A., Mereghetti, C., Palano, B.: Small size quantum automata recognizing some regular languages. Theoretical Computer Science 340, 394–407 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bertoni, A., Mereghetti, C., Palano, B.: Some formal tools for analyzing quantum automata. Theoretical Computer Science 356, 14–25 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bertoni, A., Mereghetti, C., Palano, B.: Trace monoids with idempotent generators and measure-only quantum automata. Natural Computing 9, 383–395 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bianchi, M.P., Mereghetti, C., Palano, B.: Size Lower Bounds for Quantum Automata. In: Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds.) UCNC 2013. LNCS, vol. 7956, pp. 19–30. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Bianchi, M.P., Mereghetti, C., Palano, B., Pighizzini, G.: On the size of unary probabilistic and nondeterministic automata. Fund. Informaticae 112, 119–135 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Bianchi, M.P., Palano, B.: Behaviours of unary quantum automata. Fund. Informaticae 104, 1–15 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Bianchi, M.P., Pighizzini, G.: Normal forms for unary probabilistic automata. Theoretical Informatics and Applications 46, 495–510 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Brodsky, A., Pippenger, N.: Characterizations of 1-way quantum finite automata. SIAM J. Computing 5, 1456–1478 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chrobak, M.: Finite automata and unary languages. Theoretical Computer Science 47, 149–158 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Golovkins, M., Kravtsev, M.: Probabilistic Reversible Automata and Quantum Automata. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 574–583. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  17. Gramlich, G.: Probabilistic and Nondeterministic Unary Automata. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 460–469. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  18. Gruska, J.: Quantum Computing. McGraw-Hill, London, New York (1999)

    MATH  Google Scholar 

  19. Gruska, J.: Descriptional complexity issues in quantum computing. J. Automata, Languages and Combinatorics 5, 191–218 (2000)

    MathSciNet  MATH  Google Scholar 

  20. Gruska J., Qiu, D., Zheng, S.: Generalizations of the distributed Deutsch-Jozsa promise problem (2014), http://arxiv.org/abs/1402.7254arXiv:1402.7254

  21. Gruska J., Qiu, D., Zheng, S.: Potential of quantum finite automata with exact acceptance (2014). http://arxiv.org/abs/1404.1689arXiv:1404.1689

  22. Hirvensalo, M.: Quantum automata with open time evolution. Int. J. Natural Computing Research 1, 70–85 (2010)

    Article  Google Scholar 

  23. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (2001)

    MATH  Google Scholar 

  24. Kapoutsis, C.A.: Removing bidirectionality from nondeterministic finite automata. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 544–555. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  25. Kondacs A., Watrous, J.: On the power of quantum finite state automata. In: Proc. 38th Symposium on Foundations of Computer Science (FOCS 1997), pp. 66–75 (1997)

    Google Scholar 

  26. Kunc, M., Okhotin, A.: Describing Periodicity in Two-Way Deterministic Finite Automata Using Transformation Semigroups. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 324–336. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  27. Mercer, M.: Lower bounds for generalized quantum finite automata. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 373–384. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  28. Moore, C., Crutchfield, J.: Quantum automata and quantum grammars. Theoretical Computer Science 237, 275–306 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mereghetti, C., Palano, B.: Quantum finite automata with control language. Theoretical Informatics and Applications 40, 315–332 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mereghetti, C., Palano, B.: Quantum automata for some multiperiodic languages. Theoretical Computer Science 387, 177–186 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mereghetti, C., Palano, B., Pighizzini, G.: Note on the succinctness of deterministic, nondeterministic, probabilistic and quantum finite automata. Theoretical Informatics and Applications 5, 477–490 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mereghetti, C., Pighizzini, G.: Optimal simulations between unary automata. SIAM J. Comput. 30, 1976–1992 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Meyer, A., Fischer, M.: Economy of description by automata, grammars, and formal systems. In: Proc. 12th Annual IEEE Symposium on Switching and Automata Theory, pp. 188–91 (1971)

    Google Scholar 

  34. Murakami, Y., Nakanishi, M., Yamashita, S., Watanabe, K.: Quantum versus classical pushdown automata in exact computation. IPSJ Digital Courier 1, 426–435 (2005)

    Article  MathSciNet  Google Scholar 

  35. Nayak, A.: Optimal lower bounds for quantum automata and random access codes. In: Proc. 40th Symposium on Foundations of Computer Science (FOCS 1999), pp. 369–376 (1999)

    Google Scholar 

  36. Paz, A.: Introduction to Probabilistic Automata. Academic Press, New York, London (1971)

    MATH  Google Scholar 

  37. Rabin, M.O.: Probabilistic automata. Information and Control 6, 230–245 (1963)

    Article  MATH  Google Scholar 

  38. Rabin, M., Scott, D.: Finite automata and their decision problems. IBM J. Res. Develop. 3, 114–125 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  39. Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM J. Res. Develop. 3, 198–200 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  40. Shilov,G: Linear Algebra. Prentice Hall (1971) (Reprinted by Dover, 1977)

    Google Scholar 

  41. Sipser, M.: Lower bounds on the size of sweeping automata. J. Comput. System Sci. 21, 195–202 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zheng, S., Gruska, J., Qiu, D.: On the State Complexity of Semi-quantum Finite Automata. In: Dediu, A.-H., Mart\’ın-Vide, C., Sierra-Rodr\’ıguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 601–612. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  43. Zheng, S., Qiu, D., Gruska, J., Li, L., Mateus, P.: State succinctness of two-way finite automata with quantum and classical states. Theoretical Computer Science 499, 98–112 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zheng, S., Qiu, D., Li, L., Gruska, J.: One-Way finite automata with quantum and classical states. In: Bordihn, H., Kutrib, M., Truthe, B. (eds.) Languages Alive. LNCS, vol. 7300, pp. 273–290. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Mereghetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bianchi, M.P., Mereghetti, C., Palano, B. (2014). Complexity of Promise Problems on Classical and Quantum Automata. In: Calude, C., Freivalds, R., Kazuo, I. (eds) Computing with New Resources. Lecture Notes in Computer Science(), vol 8808. Springer, Cham. https://doi.org/10.1007/978-3-319-13350-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13350-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13349-2

  • Online ISBN: 978-3-319-13350-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics