Skip to main content

Neural Network and kNN Classifiers for On-Line Signature Verification

  • Conference paper
  • First Online:
Biometric Authentication (BIOMET 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8897))

Included in the following conference series:

  • 1044 Accesses

Abstract

In this paper a method for on-line signature verification is presented. The proposed approach consists of the following consecutive steps: feature selection and classification. Experiments are carried out on SUsig database [5] of genuine and forgery signatures of 89 users. The results obtained by applying two different types of classifiers (NN and k-nearest neighbours) are compared. For each user, several NN and kNN models are evaluated by 10-fold cross validation and LOOCV respectively. The “optimal” models are found together with their parameters: number of hidden neurons for NN, type of signature forgeries for training, input features and value of k. The influence of the signature forgery type (random and skilled) over the feature selection and verification is investigated as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Nalwa, V.S., Ekeland, I.: Automatic on-line signature verification. Proceedings of the IEEE 85, 213–239 (1997)

    Article  Google Scholar 

  2. Jain, A.: Stan Li. Springer, Encyclopedia of Biometrics (2009)

    Google Scholar 

  3. Gluhchev, G., Savov, M., Boumbarov, O., Vassileva, D.: A New Approach to Signature Based Authentication, 2nd Int. Conf. on Biometrics, Seoul, pp. 594–603 (August 26-29, 2007)

    Google Scholar 

  4. Savov, M., Gluhchev, G.: Signature verification via Hand-Pen motion investigation. In: Proc. Int. Conf. Recent Advances in Soft Computing, Canterbury, pp. 490–495 (2006)

    Google Scholar 

  5. Kholmatov, A., Yanikoglu B.: SUSIG: An on-line signature database, associated protocols and benchmark results. Pattern Analysis & Applications 12, 227–236 (2009)

    Google Scholar 

  6. Plamondon, R., Lorette, G.: Automatic signature verification and writer identification – the state of the art. Pattern Recognition 22, 107–131 (1989)

    Article  Google Scholar 

  7. Ink Data. http://msdn.microsoft.com/en-us/library/ms811395.aspx

  8. Richiardi, J., Ketabdar, H., Drygajlo, A.: In: Local and Global Feature Selection for On-line Signature Verification. - Eighth International Conference on Document Analysis and Recognition (ICDAR 2005), pp. 625–629 (2005)

    Google Scholar 

  9. Leclerc, F., Plamondon, R.: Automatic signature verification: the state of the art 1989-1993. International Journal of Pattern Recognition and Artificial Intelligence 8(3), 643–660 (1994)

    Article  Google Scholar 

  10. Hocking, R.R., Leslie, R.: Selection of the Best Subset in Regression Analysis. Technometrics 9, 531–540 (1967)

    Article  MathSciNet  Google Scholar 

  11. LaMotte, L.R., Hocking, R.R.: Computational Efficiency in the Selection of Regression Variables. Technometrics 12, 83–93 (1970)

    MATH  Google Scholar 

  12. Aйвaзян, C.A., Бeжaeвa, З.И., Cтapoвepoв, O.B.: Клaccификaция мнoгoмepныx нaблюдeний, Mocквa, Cтaтиcтикa, 240 cтp. (1974)

    Google Scholar 

  13. McCabe, A., Trevathan, J., Read, W.: Neural network-based handwritten signature verification. Journal of Computers 3(8), 9–22 (2008)

    Article  Google Scholar 

  14. Duda, P.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley, New York (1973)

    MATH  Google Scholar 

  15. Tablet PC SDK 1.7. http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=20039

  16. McCabe, A., Trevathan, J., Read, W.: Neural network-based handwritten signature verification. Journal of Computers 3(8), 9–22 (2008)

    Article  Google Scholar 

  17. Berrin, A.: Yanikoglu. Online Signature Verification Using Fourier Descriptors. EURASIP J. Adv. Sig. Proc, Alisher Kholmatov (2009)

    Google Scholar 

  18. Kholmatov, A., Yanikoglu, B.: Identity authentication using improved online signature verification method. Pattern Recognition Letters 26(15), 2400–2408 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Desislava Boyadzieva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Boyadzieva, D., Gluhchev, G. (2014). Neural Network and kNN Classifiers for On-Line Signature Verification. In: Cantoni, V., Dimov, D., Tistarelli, M. (eds) Biometric Authentication. BIOMET 2014. Lecture Notes in Computer Science(), vol 8897. Springer, Cham. https://doi.org/10.1007/978-3-319-13386-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13386-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13385-0

  • Online ISBN: 978-3-319-13386-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics