Skip to main content

Estimation and Prediction Using Belief Functions: Application to Stochastic Frontier Analysis

  • Chapter
  • First Online:
Econometrics of Risk

Part of the book series: Studies in Computational Intelligence ((SCI,volume 583))

  • 2050 Accesses

Abstract

We outline an approach to statistical inference based on belief functions. For estimation, a consonant belief functions is constructed from the likelihood function. For prediction, the method is based on an equation linking the unobserved random quantity to be predicted, to the parameter and some underlying auxiliary variable with known distribution. The approach allows us to compute a predictive belief function that reflects both estimation and random uncertainties. The method is invariant to one-to-one transformations of the parameter and compatible with Bayesian inference, in the sense that it yields the same results when provided with the same information. It does not, however, require the user to provide prior probability distributions. The method is applied to stochastic frontier analysis with cross-sectional data. We demonstrate how predictive belief functions on inefficiencies can be constructed for this problem and used to assess the plausibility of various assertions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aickin, M.: Connecting Dempster-Shafer belief functions with likelihood-based inference. Synthese 123, 347–364 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aigner, D.J., Lovell, C.A.K., Schmidt, P.: Formulation and estimation of stochastic frontier production function models. J. Econom. 6, 21–37 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barnard, G.A., Jenkins, G.M., Winsten, C.B.: Likelihood inference and time series. J. R. Stat. Soc. 125(3), 321–372 (1962)

    Google Scholar 

  4. Bayarri, M.J., DeGroot, M.H.: Difficulties and ambiguities in the definition of a likelihood function. J. Ital. Stat. Soc. 1(1), 1–15 (1992)

    Article  MATH  Google Scholar 

  5. Ben Abdallah, N., Mouhous Voyneau, N., Denœux, T.: Combining statistical and expert evidence using belief functions: application to centennial sea level estimation taking into account climate change. Int. J. Approx. Reason. 55, 341–354 (2014)

    Article  Google Scholar 

  6. Berger, J.O., Wolpert, R.L.: The likelihood principle: A Review, Generalizations, and Statistical Implications, 2nd edn. Lecture Notes-Monograph Series, vol 6. Institute of Mathematical Statistics, Hayward (1988)

    Google Scholar 

  7. Birnbaum, A.: On the foundations of statistical inference. J. Am. Stat. Assoc. 57(298), 269–306 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bjornstad, J.F.: Predictive likelihood: a review. Stat. Sci. 5(2), 242–254, 05 (1990)

    Google Scholar 

  9. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38, 325–339 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dempster, A.P.: A generalization of Bayesian inference (with discussion). J. R. Stat. Soc. B 30, 205–247 (1968)

    MATH  MathSciNet  Google Scholar 

  11. Denœux, T.: Likelihood-based belief function: justification and some extensions to low-quality data. Int. J. Approx. Reason. 55(7), 1535–1547 (2014)

    Article  MATH  Google Scholar 

  12. Dubois, D., Prade, H.: A set-theoretic view of belief functions: logical operations and approximations by fuzzy sets. Int. J. Gen. Syst. 12(3), 193–226 (1986)

    Article  MathSciNet  Google Scholar 

  13. Edwards, A.W.F.: Likelihood (expanded edn.). The John Hopkins University Press, Baltimore (1992)

    Google Scholar 

  14. Greene, W.H.: Econometric Analysis, 6th edn. Prentice Hall, Upper Saddle River (2008)

    Google Scholar 

  15. Jondrow, J., Lovell, C.A.K., Materov, I.S., Schmidt, P.: On the estimation of technical efficiency in the stochastic production function model. J. Econom. 19, 233–238 (1982)

    Article  MathSciNet  Google Scholar 

  16. Kanjanatarakul, O., Sriboonchitta, S., Denœux, T.: Forecasting using belief functions: an application to marketing econometrics. Int. J. Approx. Reason. 55(5), 1113–1128 (2014)

    Article  MATH  Google Scholar 

  17. Kanjanatarakul, O., Lertpongpiroon P., Singkharat S. and Sriboonchitta, S.: Econometric forecasting using linear regression and belief functions, In: Cuzzolin, F. (ed.), Belief Functions: Theory and Applications. Oxford, Springer, LNAI 8764, pp. 304–312 (2014)

    Google Scholar 

  18. Mathiasen, P.E.: Prediction functions. Scand. J. Stat. 6(1), 1–21 (1979)

    MATH  MathSciNet  Google Scholar 

  19. Robbins, H.: An empirical Bayes approach to statistics. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability. Volume 1: Contributions to the Theory of Statistics, pp. 157–163 (1956)

    Google Scholar 

  20. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    Google Scholar 

  21. Smets, Ph: Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem. Int. J. Approx. Reason. 9, 1–35 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  22. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London (1991)

    Book  MATH  Google Scholar 

  23. Wasserman, L.A.: Belief functions and statistical evidence. Can. J. Stat. 18(3), 183–196 (1990)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Denœux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kanjanatarakul, O., Kaewsompong, N., Sriboonchitta, S., Denœux, T. (2015). Estimation and Prediction Using Belief Functions: Application to Stochastic Frontier Analysis. In: Huynh, VN., Kreinovich, V., Sriboonchitta, S., Suriya, K. (eds) Econometrics of Risk. Studies in Computational Intelligence, vol 583. Springer, Cham. https://doi.org/10.1007/978-3-319-13449-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13449-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13448-2

  • Online ISBN: 978-3-319-13449-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics