Abstract
A commonly studied means of parameterizing graph problems is the deletion distance from triviality [10], which counts vertices that need to be deleted from a graph to place it in some class for which efficient algorithms are known. In the context of graph isomorphism, we define triviality to mean a graph with maximum degree bounded by a constant, as such graph classes admit polynomial-time isomorphism tests. We generalise deletion distance to a measure we call elimination distance to triviality, based on elimination trees or tree-depth decompositions. We establish that graph canonisation, and thus graph isomorphism, is \(\mathsf {FPT}\) when parameterized by elimination distance to bounded degree, generalising results of Bouland et al. [2] on isomorphism parameterized by tree-depth.
Research supported in part by EPSRC grant EP/H026835, DAAD grant A/13/05456, and DFG project Logik, Struktur und das Graphenisomorphieproblem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Babai, L., Luks, E.M.: Canonical labeling of graphs. In: Proceedings of 15th ACM Symposium. Theory of Computing, pp. 171–183. ACM, New York (1983)
Bouland, A., Dawar, A., Kopczyński, E.: On tractable parameterizations of graph isomorphism. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS, vol. 7535, pp. 218–230. Springer, Heidelberg (2012)
Diestel, R.: Graph Theory. Springer, New York (2000)
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (2012)
Evdokimov, S., Ponomarenko, I.: Isomorphism of coloured graphs with slowly increasing multiplicity of Jordan blocks. Combinatorica 19(3), 321–333 (1999)
Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph layout problems parameterized by vertex cover. In: Proceedings 19th International Symposium Algorithms and Computation, pp. 294–305 (2008)
Filotti, I.S., Mayer, J.N.: A polynomial-time algorithm for determining the isomorphism of graphs of fixed genus. In: STOC ’80: Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing, ACM Request Permissions, April 1980
Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)
Grohe, M., Marx, D.: Structure theorem and isomorphism test for graphs with excluded topological subgraphs. In: Proceedings 44th Symposium on Theory of Computing, pp. 173–192 (2012)
Guo, J., Hüffner, F., Niedermeier, R.: A structural view on parameterizing problems: distance from triviality. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 162–173. Springer, Heidelberg (2004)
Kratsch, S., Schweitzer, P.: Isomorphism for graphs of bounded feedback vertex set number. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 81–92. Springer, Heidelberg (2010)
Lindell, S.: A logspace algorithm for tree canonization (extended abstract). In: STOC ’92: Proceedings of the Twenty-fourth Annual ACM Symposium on Theory of Computing, ACM Request Permissions, July 1992
Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Fixed-parameter tractable canonization and isomorphism test for graphs of bounded treewidth. arxiv:1404.0818 [cs.DS] (2014)
Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial time. J. Comput. Syst. Sci. 25(1), 42–65 (1982)
McKay, B.D.: Practical graph isomorphism. Congressus Numerantium 30, 45–87 (1981)
McKay, B.D., Piperno, A.: Practical graph isomorphism. II. J. Symb. Comput. 60, 94–112 (2014)
Miller, G.: Isomorphism testing for graphs of bounded genus. In: STOC ’80: Proceedings 12th ACM Symposium Theory of Computing. ACM (1980)
Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)
Ponomarenko, I.N.: The isomorphism problem for classes of graphs closed under contraction. J. Sov. Math. 55(2), 1621–1643 (1991)
Toda, S.: Computing automorphism groups of chordal graphs whose simplicial components are of small size. IEICE Trans. Inf. Syst. E89–D(8), 2388–2401 (2006)
Uehara, R., Toda, S., Nagoya, T.: Graph isomorphism completeness for chordal bipartite graphs and strongly chordal graphs. Discrete Appl. Math. 145(3), 479–482 (2005)
Yamazaki, K., Bodlaender, H.L., De Fluiter, B., Thilikos, D.M.: Isomorphism for. In: Bongiovanni, G., Bovet, D.P., Di Battista, G. (eds.) CIAC 1997. LNCS, vol. 1203, pp. 276–287. Springer, Heidelberg (1997)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Bulian, J., Dawar, A. (2014). Graph Isomorphism Parameterized by Elimination Distance to Bounded Degree. In: Cygan, M., Heggernes, P. (eds) Parameterized and Exact Computation. IPEC 2014. Lecture Notes in Computer Science(), vol 8894. Springer, Cham. https://doi.org/10.1007/978-3-319-13524-3_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-13524-3_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-13523-6
Online ISBN: 978-3-319-13524-3
eBook Packages: Computer ScienceComputer Science (R0)