Abstract
A vertex-subset graph problem Q defines which subsets of the vertices of an input graph are feasible solutions. The reconfiguration version of a vertex-subset problem \(\textit{Q}\) asks whether it is possible to transform one feasible solution for \(\textit{Q}\) into another in at most \(\ell \) steps, where each step is a vertex addition or deletion, and each intermediate set is also a feasible solution for \(\textit{Q}\) of size bounded by \(k\). Motivated by recent results establishing W[1]-hardness of the reconfiguration versions of most vertex-subset problems parameterized by \(\ell \), we investigate the complexity of such problems restricted to graphs of bounded treewidth. We show that the reconfiguration versions of most vertex-subset problems remain PSPACE-complete on graphs of treewidth at most \(t\) but are fixed-parameter tractable parameterized by \(\ell + t\) for all vertex-subset problems definable in monadic second-order logic (MSOL). To prove the latter result, we introduce a technique which allows us to circumvent cardinality constraints and define reconfiguration problems in MSOL.
A.E. Mouawad and N. Nishimura—Research supported by the Natural Science and Engineering Research Council of Canada.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41(1), 153–180 (1994)
Bauer, G., Otto, F.: Finite complete rewriting systems and the complexity of the word problem. Acta Inf. 21(5), 521–540 (1984)
Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial optimization on graphs of bounded treewidth. Comput. J. 51(3), 255–269 (2008)
Bonsma, P.: The complexity of rerouting shortest paths. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 222–233. Springer, Heidelberg (2012)
Bonsma, P.: Rerouting shortest paths in planar graphs. In: Leibniz International Proceedings in Informatics (LIPIcs), FSTTCS 2012, vol. 18, pp. 337–349 (2012)
Cereceda, L., van den Heuvel, J., Johnson, M.: Connectedness of the graph of vertex-colourings. Discrete Math. 308(56), 913–919 (2008)
Cereceda, L., van den Heuvel, J., Johnson, M.: Finding paths between 3-colorings. J. Graph Theory 67(1), 69–82 (2011)
Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)
Demaine, E., Hajiaghayi, M., Kawarabayashi, K.: Algorithmic graph minor theory: secomposition, approximation, and coloring. In: Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science, pp. 637–646, October 2005
Demaine, E.D., Hajiaghayi, M.: The bidimensionality theory and its algorithmic applications. Comput. J. 51(3), 292–302 (2008)
Diestel, R.: Graph Theory. Springer, Heidelberg (2005). (Electronic Edition)
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1997)
Eppstein, D.: Diameter and treewidth in minor-closed graph families. Algorithmica 27(3), 275–291 (2000)
Fiorini, S., Hardy, N., Reed, B., Vetta, A.: Planar graph bipartization in linear time. Discrete Appl. Math. 156(7), 1175–1180 (2008)
Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)
Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectivity of boolean satisfiability: computational and structural dichotomies. SIAM J. Comput. 38(6), 2330–2355 (2009)
Grohe, M.: Logic, graphs, and algorithms. Electron. Colloquium Comput. Complex. (ECCC) 14(091), 3 (2007)
Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M., Uehara, R., Uno, Y.: On the complexity of reconfiguration problems. Theor. Comput. Sci. 412(12–14), 1054–1065 (2011)
Ito, T., Kamiński, M., Demaine, E.D.: Reconfiguration of list edge-colorings in a graph. Discrete Appl. Math. 160(15), 2199–2207 (2012)
Kamiński, M., Medvedev, P., Milanič, M.: Shortest paths between shortest paths. Theor. Comput. Sci. 412(39), 5205–5210 (2011)
Kloks, T. (ed.): Treewidth Computations and Approximations. LNCS, vol. 842. Springer, Heidelberg (1994)
Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On the parameterized complexity of reconfiguration problems. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 281–294. Springer, Heidelberg (2013)
Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)
Post, E.L.: Recursive unsolvability of a problem of Thue. J. Symbol. Logic 12(1), 1–11 (1947)
Wrochna, M.: Reconfiguration in bounded bandwidth and treedepth (2014). arXiv:1405.0847
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Mouawad, A.E., Nishimura, N., Raman, V., Wrochna, M. (2014). Reconfiguration over Tree Decompositions. In: Cygan, M., Heggernes, P. (eds) Parameterized and Exact Computation. IPEC 2014. Lecture Notes in Computer Science(), vol 8894. Springer, Cham. https://doi.org/10.1007/978-3-319-13524-3_21
Download citation
DOI: https://doi.org/10.1007/978-3-319-13524-3_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-13523-6
Online ISBN: 978-3-319-13524-3
eBook Packages: Computer ScienceComputer Science (R0)