Abstract
The Degree Anonymity problem arises in the context of combinatorial graph anonymization. It asks, given a graph \(G\) and two integers \(k\) and \(s\), whether \(G\) can be made k-anonymous with at most \(s\) modifications. Here, a graph is k-anonymous if the graph contains for every vertex at least \(k-1\) other vertices of the same degree. Complementing recent investigations on its computational complexity, we show that this problem is very hard when studied from the viewpoints of approximation as well as parameterized approximation. In particular, for the optimization variant where one wants to minimize the number of either edge or vertex deletions there is no factor-\(n^{1-\varepsilon }\) approximation running in polynomial time unless P = NP, for any constant \(0 < \varepsilon \le 1\). For the variant where one wants to maximize \(k\) and the number \(s\) of either edge or vertex deletions is given, there is no factor-\(n^{{1}/{2}-\varepsilon }\) approximation running in time \(f(s) \cdot n^{O(1)}\) unless W[1] = FPT, for any constant \(0 < \varepsilon \le {1}/{2}\) and any function \(f\). On the positive side, we classify the general decision version as fixed-parameter tractable with respect to the combined parameter solution size \(s\) and maximum degree.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia (1999)
Bredereck, R., Froese, V., Hartung, S., Nichterlein, A., Niedermeier, R., Talmon, N.: The complexity of degree anonymization by vertex addition. In: Gu, Q., Hell, P., Yang, B. (eds.) AAIM 2014. LNCS, vol. 8546, pp. 44–55. Springer, Heidelberg (2014)
Bredereck, R., Hartung, S., Nichterlein, A., Woeginger, G.J.: The complexity of finding a large subgraph under anonymity constraints. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) Algorithms and Computation. LNCS, vol. 8283, pp. 152–162. Springer, Heidelberg (2013)
Chester, S., Kapron, B., Srivastava, G., Venkatesh, S.: Complexity of social network anonymization. Soc. Netw. Anal. Min. 3(2), 151–166 (2013)
Chester, S., Kapron, B.M., Ramesh, G., Srivastava, G., Thomo, A., Venkatesh, S.: Why Waldo befriended the dummy? \(k\)-anonymization of social networks with pseudo-nodes. Soc. Netw. Anal. Min. 3(3), 381–399 (2013)
Clarkson, K.L., Liu, K., Terzi, E.: Towards identity anonymization in social networks. In: Yu, P., Han, J., Faloutsos, C. (eds.) Link Mining: Models, Algorithms, and Applications, pp. 359–385. Springer, New York (2010)
Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer, London (2013)
Frick, M., Grohe, M.: Deciding first-order properties of locally tree-decomposable structures. J. ACM 48(6), 1184–1206 (2001)
Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing: a survey of recent developments. ACM Comput. Surv. 42(4), 14:1–14:53 (2010)
Hartung, S., Hoffmann, C., Nichterlein, A.: Improved upper and lower bound heuristics for degree anonymization in social networks. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 376–387. Springer, Heidelberg (2014)
Hartung, S., Nichterlein, A., Niedermeier, R., Suchý, O.: A refined complexity analysis of degree anonymization in graphs. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 594–606. Springer, Heidelberg (2013)
Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD ’08), pp. 93–106. ACM (2008)
Marx, D.: Parameterized complexity and approximation algorithms. Comput. J. 51(1), 60–78 (2008)
Wu, X., Ying, X., Liu, K., Chen, L.: A survey of privacy-preservation of graphs and social networks. In: Aggarwal, C.C., Wang, H. (eds.) Managing and Mining Graph Data, pp. 421–453. Springer, Berlin (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Bazgan, C., Nichterlein, A. (2014). Parameterized Inapproximability of Degree Anonymization. In: Cygan, M., Heggernes, P. (eds) Parameterized and Exact Computation. IPEC 2014. Lecture Notes in Computer Science(), vol 8894. Springer, Cham. https://doi.org/10.1007/978-3-319-13524-3_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-13524-3_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-13523-6
Online ISBN: 978-3-319-13524-3
eBook Packages: Computer ScienceComputer Science (R0)