Abstract
In this paper, we pioneer a study of parameterized automata constructions for languages relevant to the design of parameterized algorithms. We focus on the \(k\) -Distinct language \(L_k(\varSigma )\subseteq \varSigma ^k\), defined as the set of words of length \(k\) whose symbols are all distinct. This language is implicitly related to several breakthrough techniques, developed during the last two decades, to design parameterized algorithms for fundamental problems such as \(k\) -Path and \(r\) -Dimensional \(k\) -Matching. Building upon the well-known color coding, divide-and-color and narrow sieves techniques, we obtain the following automata constructions for \(L_k(\varSigma )\). We develop non-deterministic automata (NFAs) of sizes \(4^{k+o(k)}\!\cdot \! n^{O(1)}\) and \((2e)^{k+o(k)}\!\cdot \! n^{O(1)}\), where the latter satisfies a ‘bounded ambiguity’ property relevant to approximate counting, as well as a non-deterministic xor automaton (NXA) of size \(2^k\!\cdot \! n^{O(1)}\), where \(n=|\varSigma |\). We show that our constructions lead to a unified approach for the design of both deterministic and randomized algorithms for parameterized problems, considering also their approximate counting variants. To demonstrate our approach, we consider the \(k\) -Path, \(r\) -Dimensional \(k\) -Matching and Module Motif problems.
The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement number 257575.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We consider vertex weights, rather than color similarity scores (see [41]), for the sake of clarity. Our algorithms can be easily modified to handle color similarity scores.
- 2.
We slightly improve the previous randomized algorithm that approximately counts only 3-dimensional \(k\)-matchings, and deterministic algorithm for Module Motif.
- 3.
We note that determining the minimal NFA size, even for a finite regular language, is computationally hard [20].
- 4.
If while reading a word we reach a state where we cannot progress by reading the next symbol, this run is rejected and the state we are at is not added to \(M(w)\).
- 5.
We assume NXAs do not contain directed cycles of only \(\epsilon \)-transitions, as their XOR-language is not properly defined in this case.
- 6.
Usually the Hankel matrix is defined as an infinite matrix, and we are defining a submatrix of it; for a finite language \(L\subseteq [n]^k\), that the rank of this submatrix is clearly the same as the rank of the entire matrix, and we are only concerned with its rank.
References
Abasi, H., Bshouty, N.: A simple algorithm for undirected hamiltonicity. Electron. Colloquium Comput. Complex. (ECCC) 20, 12 (2013)
Alon, N., Gutner, S.: Balanced hashing, color coding and approximate counting. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 1–16. Springer, Heidelberg (2009)
Alon, N., Yuster, R., Zwick, U.: Color coding. J. Assoc. Comput. Mach. 42(4), 844–856 (1995)
Ben-Basat, R.: M.Sc. thesis. Technical reports and theses, Technion (2015)
Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Narrow sieves for parameterized paths and packings. CoRR abs/1007.1161 (2010)
Bodlaender, H.L.: On linear time minor tests with depth-first search. J. Algorithms 14(1), 1–23 (1993)
Chen, J., Feng, Q., Liu, Y., Lu, S., Wang, J.: Improved deterministic algorithms for weighted matching and packing problems. Theor. Comput. Sci. 412(23), 2503–2512 (2011)
Chen, J., Friesen, D., Jia, W., Kanj, I.: Using nondeterminism to design effcient deterministic algorithms. Algorithmica 40(2), 83–97 (2004)
Chen, J., Kneis, J., Lu, S., Molle, D., Richter, S., Rossmanith, P., Sze, S.H., Zhang, F.: Randomized divide-and-conquer: improved path, matching, and packing algorithms. SIAM J. Comput. 38(6), 2526–2547 (2009)
Chen, J., Liu, Y., Lu, S., Sze, S.H., Zhang, F.: Iterative expansion and color coding: an improved algorithm for 3D-matching. ACM Trans. Algorithms 8(1), 6 (2012)
Chen, S., Chen, Z.: Faster deterministic algorithms for packing, matching and \(t\)-dominating set problems. CoRR abs/1306.360 (2013)
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999)
Downey, R.G., Fellows, M.R., Koblitz, M.: Techniques for exponential parameterized reductions in vertex set problems (Unpublished, reported in [12], Sect. 8.3)
Fellows, M.R., Knauer, C., Nishimura, N., Ragde, P., Rosamond, F.A., Stege, U., Thilikos, D.M., Whitesides, S.: Faster fixed-parameter tractable algorithms for matching and packing problems. Algorithmica 52(2), 167–176 (2008)
Fomin, F., Lokshtanov, D., Saurabh, S.: Efficient computation of representative sets with applications in parameterized and exact agorithms. In: SODA, pp. 142–151 (2014)
Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.: Representative sets of product families. In: ESA (2014, to appear)
Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, San Francisco (1979)
Goyal, P., Misra, N., Panolan, F.: Faster deterministic algorithms for \(r\)-dimensional matching using representative sets. In: FSTTCS, pp. 237–248 (2013)
Goyal, P., Misra, N., Panolan, F., Zehavi, M.: Faster deterministic algorithms for matching and packing problems. Unpublished, results reported in [18, 40] (2014)
Gruber, H., Holzer, M.: Computational complexity of NFA minimization for finite and unary languages. In: LATA, pp. 261–272 (2007)
Hüffner, F., Wernicke, S., Zichner, T.: Algorithm engineering for color-coding with applications to signaling pathway detection. Algorithmica 52(2), 114–132 (2008)
Kleitman, D.J., Spencer, J.: Families of k-independent sets. Discrete Math. 6(3), 255–262 (1972)
Koutis, I.: A faster parameterized algorithm for set packing. Inf. Proc. Lett. 94, 7–9 (2005)
Koutis, I.: Faster algebraic algorithms for path and packing problems. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 575–586. Springer, Heidelberg (2008)
Koutis, I., Williams, R.: Limits and applications of group algebras for parameterized problems. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 653–664. Springer, Heidelberg (2009)
Liu, Y., Chen, J., Wang, J.: On efficient FPT algorithms for weighted matching and packing problems. In: TAMC, pp. 575–586 (2007)
Liu, Y., Chen, J., Wang, J.: A randomized approximation algorithm for parameterized 3-d matching counting problem. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 349–359. Springer, Heidelberg (2007)
Liu, Y., Lu, S., Chen, J., Sze, S.-H.: Greedy localization and color-coding: improved matching and packing algorithms. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 84–95. Springer, Heidelberg (2006)
M. Naor, L.J.S., Srinivasan, A.: Splitters and near-optimal derandomization. In: FOCS, pp. 182–191 (1995)
Mendelzon, A.O., Wood, P.T.: Finding regular simple paths in graph databases. SIAM J. Comput. 24(6), 1235–1258 (1995)
Monien, B.: How to find long paths efficiently. Ann. Discrete Math. 25, 239–254 (1985)
Rizzi, R., Sikora, F.: Some results on more flexible versions of graph motif. In: Hirsch, E.A., Karhumäki, J., Lepistö, A., Prilutskii, M. (eds.) CSR 2012. LNCS, vol. 7353, pp. 278–289. Springer, Heidelberg (2012)
Ryser, H.J.: Combinatorial Mathematics. The Carus Mathematical Monographs. The Mathematical Association of America, Washington (1963)
Seroussi, G., Bshouty, N.H.: Vector sets for exhaustive testing of logic circuits. IEEE Trans. Inf. Theory 34(3), 513–522 (1988)
Shachnai, H., Zehavi, M.: Representative families: a unified tradeoff-based approach. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 786–797. Springer, Heidelberg (2014)
Vuillemin, J., Gama, N.: Compact normal form for regular languages as xor automata. In: Maneth, S. (ed.) CIAA 2009. LNCS, vol. 5642, pp. 24–33. Springer, Heidelberg (2009)
Wang, J., Feng, Q.: Improved parameterized algorithms for weighted 3-set packing. In: Hu, X., Wang, J. (eds.) COCOON 2008. LNCS, vol. 5092, pp. 130–139. Springer, Heidelberg (2008)
Wang, J., Feng, Q.: An \({\rm {O}}^*(3.523^k)\) parameterized algorithm for 3-set packing. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 82–93. Springer, Heidelberg (2008)
Williams, R.: Finding paths of length \(k\) in \({O}^*(2^k)\) time. Inf. Proc. Let. 109(6), 315–318 (2009)
Zehavi, M.: Deterministic parameterized algorithms for matching and packing problems. CoRR abs/1311.0484 (2013)
Zehavi, M.: Parameterized algorithms for module motif. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 825–836. Springer, Heidelberg (2013)
Acknowledgement
We thank Hasan Abasi, Nader Bshouty, Michael Forbes and Amir Shpilka for helpful conversations.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Ben-Basat, R., Gabizon, A., Zehavi, M. (2014). The \(k\)-Distinct Language: Parameterized Automata Constructions. In: Cygan, M., Heggernes, P. (eds) Parameterized and Exact Computation. IPEC 2014. Lecture Notes in Computer Science(), vol 8894. Springer, Cham. https://doi.org/10.1007/978-3-319-13524-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-13524-3_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-13523-6
Online ISBN: 978-3-319-13524-3
eBook Packages: Computer ScienceComputer Science (R0)