Skip to main content

A Community-Based Collaborative Filtering System Dealing with Sparsity Problem and Data Imperfections

  • Conference paper
PRICAI 2014: Trends in Artificial Intelligence (PRICAI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8862))

Included in the following conference series:

Abstract

In this paper, we develop a collaborative filtering system for not only tackling the sparsity problem by exploiting community context information but for also dealing with data imperfections by means of Dempster-Shafer theory. The experimental results show that the proposed system achieves better performance when comparing it with a similar system, CoFiDS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)

    Article  Google Scholar 

  2. Bloch, I.: Some aspects of dempster-shafer evidence theory for classification of multi-modality medical images taking partial volume effect into account. Pattern Recognition Letters 17(8), 905–919 (1996)

    Article  Google Scholar 

  3. Chan, H., Darwiche, A.: A distance measure for bounding probabilistic belief change. Int. J. Approx. Reasoning 38(2), 149–174 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics 38, 325–339 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  5. Durrant-Whyte, H.F., Henderson, T.C.: Multisensor data fusion. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 585–610. Springer (2008)

    Google Scholar 

  6. Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: An algorithmic framework for performing collaborative filtering. In: SIGIR 1999: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Berkeley, CA, USA, August 15-19, pp. 230–237. ACM (1999)

    Google Scholar 

  7. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)

    Article  Google Scholar 

  8. Hewawasam, K.K.R., Premaratne, K., Shyu, M.L.: Rule mining and classification in a situation assessment application: A belief-theoretic approach for handling data imperfections. IEEE Transactions on Systems, Man, and Cybernetics, Part B 37(6), 1446–1459 (2007)

    Article  Google Scholar 

  9. Huang, Z., Chen, H., Zeng, D.: Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering. ACM Transactions on Information Systems 22(1), 116–142 (2004)

    Article  Google Scholar 

  10. Khaleghi, B., Khamis, A., Karray, F.O., Razavi, S.N.: Multisensor data fusion: A review of the state-of-the-art. Information Fusion 14(1), 28–44 (2013)

    Article  Google Scholar 

  11. Koren, Y., Bell, R.M., Volinsky, C.: Matrix factorization techniques for recommender systems. IEEE Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  12. Ricci, F., Rokach, L., Shapira, B., Kantor, P.B.B. (eds.): Recommender Systems Handbook. Springer (2011)

    Google Scholar 

  13. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press (1976)

    Google Scholar 

  14. Smets, P.: Practical uses of belief functions. In: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, UAI 1999, pp. 612–621. Morgan Kaufmann Publishers Inc. (1999)

    Google Scholar 

  15. Wickramarathne, T.L., Premaratne, K., Kubat, M., Jayaweera, D.T.: Cofids: A belief-theoretic approach for automated collaborative filtering. IEEE Trans. Knowl. Data Eng. 23(2), 175–189 (2011)

    Article  Google Scholar 

  16. Xie, J., Szymanski, B.K.: Towards linear time overlapping community detection in social networks. In: Tan, P.-N., Chawla, S., Ho, C.K., Bailey, J. (eds.) PAKDD 2012, Part II. LNCS(LNAI), vol. 7302, pp. 25–36. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1, 3–28 (1978)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Nguyen, VD., Huynh, VN. (2014). A Community-Based Collaborative Filtering System Dealing with Sparsity Problem and Data Imperfections. In: Pham, DN., Park, SB. (eds) PRICAI 2014: Trends in Artificial Intelligence. PRICAI 2014. Lecture Notes in Computer Science(), vol 8862. Springer, Cham. https://doi.org/10.1007/978-3-319-13560-1_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13560-1_74

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13559-5

  • Online ISBN: 978-3-319-13560-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics