Skip to main content

Enhancing Binary Relevance for Multi-label Learning with Controlled Label Correlations Exploitation

  • Conference paper
PRICAI 2014: Trends in Artificial Intelligence (PRICAI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8862))

Included in the following conference series:

Abstract

Binary relevance (BR) is regarded as the most intuitive solution to learn from multi-label data, which decomposes the multi-label learning task into a number of independent binary learning tasks (one per class label). To amend its potential weakness of ignoring label correlations, many correlation-enabling extensions to BR have been proposed based on two major strategies, i.e. assuming random correlations with chaining structure or taking full-order correlations with stacking structure. However, in both strategies label correlations are only exploited in an uncontrolled manner, which may be problematic when error-prone and uncorrelated class labels arise. In this paper, to fulfill controlled label correlations exploitation, a novel enhancement to BR is proposed based on a two-stage filtering procedure. In the first stage, error-prone class labels are pruned from the label space based on holdout validation. In the second stage, closely-related class labels are identified based on supervised feature selection by viewing unpruned labels as features. Extensive experiments across fourteen multi-label data sets confirm the superiority of controlled label correlations exploitation, especially when large number class labels exist in the label space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classification. Pattern Recognition 37(9), 1757–1771 (2004)

    Article  Google Scholar 

  • DembczyÅ„ski, K., Cheng, W., Hüllermeier, E.: Bayes optimal multilabel classification via probabilistic classifier chains. In: Proceedings of the 27th International Conference on Machine Learning, pp. 279–286. Omnipress, Madison (2010)

    Google Scholar 

  • DembczyÅ„ski, K., Waegeman, W., Cheng, W., Hüllermeier, E.: On label dependence and loss minimization in multi-label classification. Machine Learning 88(1-2), 5–45 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • DembczyÅ„ski, K., Waegeman, W., Hüllermeier, E.: An analysis of chaining in multi-label classification. In: Proceedings of the 20th European Conference on Artificial Intelligence, pp. 294–299. IOS Press, Amsterdam (2012)

    Google Scholar 

  • Fan, R.E., Lin, C.J.: A study on threshold selection for multi-label classification. Tech. rep., Department of Computer Science & Information Engineering, National Taiwan University (2007)

    Google Scholar 

  • Fürnkranz, J., Hüllermeier, E., Loza Mencía, E., Brinker, K.: Multilabel classification via calibrated label ranking. Machine Learning 73(2), 133–153 (2008)

    Article  Google Scholar 

  • Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 22–30. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  • Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal of Machine Learning Research 3, 1157–1182 (2003)

    MATH  Google Scholar 

  • Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: An update. SIGKDD Explorations 11(1), 10–18 (2009)

    Article  Google Scholar 

  • Huang, S.J., Yu, Y., Zhou, Z.H.: Multi-label hypothesis reuse. In: Proceedings of the 18th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 525–533. ACM Press, New York (2012)

    Chapter  Google Scholar 

  • Kumar, A., Vembu, S., Menon, A.K., Elkan, C.: Learning and inference in probabilistic classifier chains with beam search. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012, Part I. LNCS, vol. 7523, pp. 665–680. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  • Li, N., Zhou, Z.-H.: Selective ensemble of classifier chains. In: Zhou, Z.-H., Roli, F., Kittler, J. (eds.) MCS 2013. LNCS, vol. 7872, pp. 146–156. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  • Madjarov, G., Kocev, D., Gjorgjevikj, D., Džeroski, S.: An extensive experimental comparison of methods for multi-label learning. Pattern Recognition 45(9), 3084–3104 (2012)

    Article  Google Scholar 

  • Montañes, E., Senge, R., Barranquero, J., Ramón Quevedo, J., José del Coz, J., Hüllermeier, E.: Dependent binary relevance models for multi-label classification. Pattern Recognition 47(3), 1494–1508 (2014)

    Article  Google Scholar 

  • Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009, Part II. LNCS (LNAI), vol. 5782, pp. 254–269. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  • Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Machine Learning 85(3), 333–359 (2011)

    Article  MathSciNet  Google Scholar 

  • Robnik-Å ikonja, M., Kononenko, I.: Theoretical and empirical analysis of ReliefF and RReliefF. Machine Learning 53(1-2), 23–69 (2003)

    Article  MATH  Google Scholar 

  • Senge, R., del Coz, J.J., Hüllermeier, E.: Rectifying classifier chains for multi-label classification. In: Proceedings of the 15th German Workshop on Learning, Knowledge, and Adaptation, pp. 162–169 (2013)

    Google Scholar 

  • Senge, R., del Coz, J.J., Hüllermeier, E.: On the problem of error propagation in classifier chains for multi-label classification. In: Spiliopoulou, M., Schmidt-Thieme, L., Janning, R. (eds.) Studies in Classification, Data Analysis, and Knowledge Organization, pp. 163–170. Springer, Berlin (2014)

    Google Scholar 

  • Ting, K.M., Witten, I.H.: Issues in stacked generalization. Journal of Artificial Intelligence Research 10, 271–289 (1999)

    MATH  Google Scholar 

  • Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 667–686. Springer, Berlin (2010)

    Google Scholar 

  • Tsoumakas, G., Katakis, I., Vlahavas, I.: Random k-labelsets for multi-label classification. IEEE Transactions on Knowledge and Data Engineering 23(7), 1079–1089 (2011)

    Article  Google Scholar 

  • Tsoumakas, G., Spyromitros-Xioufis, E., Vilcek, J., Vlahavas, I.: MULAN: A java library for multi-label learning. Journal of Machine Learning Research 12, 2411–2414 (2011)

    MATH  MathSciNet  Google Scholar 

  • Tsoumakas, G., Dimou, A., Spyromitros, E., Mezaris, V., Kompatsiaris, I., Vlahavas, I.: Correlation-based pruning of stacked binary relevance models for multi-label learning. In: Proceeding of ECML/PKDD 2009 Workshop on Learning from Multi-Label Data, pp. 101–116 (2009)

    Google Scholar 

  • Zhang, M.L., Zhang, K.: Multi-label learning by exploiting label dependency. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 999–1008. ACM Press, New York (2010)

    Google Scholar 

  • Zhang, M.L., Zhou, Z.H.: A review on multi-label learning algorithms. IEEE Transactions on Knowledge and Data Engineering 26(8), 1819–1837 (2014)

    Article  Google Scholar 

  • Zhang, Y., Yeung, D.Y.: Multilabel relationship learning. ACM Transactions on Knowledge Discovery from Data 7(2), Article 7 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Li, YK., Zhang, ML. (2014). Enhancing Binary Relevance for Multi-label Learning with Controlled Label Correlations Exploitation. In: Pham, DN., Park, SB. (eds) PRICAI 2014: Trends in Artificial Intelligence. PRICAI 2014. Lecture Notes in Computer Science(), vol 8862. Springer, Cham. https://doi.org/10.1007/978-3-319-13560-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13560-1_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13559-5

  • Online ISBN: 978-3-319-13560-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics