Skip to main content

Evolving Hard and Easy Traveling Salesman Problem Instances: A Multi-objective Approach

  • Conference paper
Simulated Evolution and Learning (SEAL 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8886))

Included in the following conference series:

Abstract

It becomes a great challenge in the research area of metaheuristics to predict the hardness of combinatorial optimization problem instances for a given algorithm. In this study, we focus on the hardness of the traveling salesman problem (TSP) for 2-opt. In the existing literature, two approaches are available to measure the hardness of TSP instances for 2-opt based on the single objective: the efficiency or the effectiveness of 2-opt. However, these two objectives may conflict with each other. To address this issue, we combine both objectives to evaluate the hardness of TSP instances, and evolve instances by a multi-objective optimization algorithm. Experiments demonstrate that the multi-objective approach discovers new relationships between features and hardness of the instances. Meanwhile, this new approach facilitates us to predict the distribution of instances in the objective space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarts, E.H., Lenstra, J.K.: Local search in combinatorial optimization. Princeton University Press (2003)

    Google Scholar 

  2. Abbass, H.A., Sarker, R., Newton, C.: PDE: a pareto-frontier differential evolution approach for multi-objective optimization problems. In: Proceedings of the 2001 Congress on Evolutionary Computation, pp. 971–978. IEEE (2001)

    Google Scholar 

  3. Applegate, D., Bixby, R., Chvatal, V., Cook, W.: Concorde tsp solver (2011), http://www.tsp.gatech.edu/concorde.html

  4. Bischl, B., Mersmann, O., Trautmann, H., Preuss, M.: Algorithm selection based on exploratory landscape analysis and cost-sensitive learning. In: Proceedings of the 14th International Conference on Genetic and Evolutionary Computation Conference, pp. 313–320. ACM (2012)

    Google Scholar 

  5. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  6. Censor, Y.: Pareto optimality in multiobjective problems. Applied Mathematics and Optimization 4(1), 41–59 (1977)

    Article  MathSciNet  Google Scholar 

  7. Chen, L., Bostel, N., Dejax, P., Cai, J., Xi, L.: A tabu search algorithm for the integrated scheduling problem of container handling systems in a maritime terminal. European Journal of Operational Research 181(1), 40–58 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Croes, G.: A method for solving traveling-salesman problems. Operations Research 6(6), 791–812 (1958)

    Article  MathSciNet  Google Scholar 

  9. Dorigo, M., Birattari, M.: Ant colony optimization. In: Encyclopedia of Machine Learning, pp. 36–39. Springer (2010)

    Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of NP-completeness. WH Freeman & Co., San Francisco (1979)

    MATH  Google Scholar 

  11. Goffe, W.L., Ferrier, G.D., Rogers, J.: Global optimization of statistical functions with simulated annealing. Journal of Econometrics 60(1), 65–99 (1994)

    Article  MATH  Google Scholar 

  12. Goldberg, D.E.: Genetic algorithms. Pearson Education India (2006)

    Google Scholar 

  13. He, J., Chen, T., Yao, X.: On the easiest and hardest fitness functions (2012)

    Google Scholar 

  14. Macready, W.G., Wolpert, D.H.: What makes an optimization problem hard? Complexity 1(5), 40–46 (1996)

    Article  MathSciNet  Google Scholar 

  15. Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.: Exploratory landscape analysis. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 829–836. ACM (2011)

    Google Scholar 

  16. Mersmann, O., Bischl, B., Trautmann, H., Wagner, M., Bossek, J., Neumann, F.: A novel feature-based approach to characterize algorithm performance for the traveling salesperson problem. Annals of Mathematics and Artificial Intelligence 69(2), 151–182 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. Qian, C., Yu, Y., Zhou, Z.-H.: On algorithm-dependent boundary case identification for problem classes. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 62–71. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Rice, J.R.: The algorithm selection problem. Advances in Computers 15, 65–118 (1976)

    Article  Google Scholar 

  19. Smith-Miles, K., van Hemert, J., Lim, X.Y.: Understanding TSP difficulty by learning from evolved instances. In: Blum, C., Battiti, R. (eds.) LION 4. LNCS, vol. 6073, pp. 266–280. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Jiang, H., Sun, W., Ren, Z., Lai, X., Piao, Y. (2014). Evolving Hard and Easy Traveling Salesman Problem Instances: A Multi-objective Approach. In: Dick, G., et al. Simulated Evolution and Learning. SEAL 2014. Lecture Notes in Computer Science, vol 8886. Springer, Cham. https://doi.org/10.1007/978-3-319-13563-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13563-2_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13562-5

  • Online ISBN: 978-3-319-13563-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics