Skip to main content

A Probabilistic Evolutionary Optimization Approach to Compute Quasiparticle Braids

  • Conference paper
Simulated Evolution and Learning (SEAL 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8886))

Included in the following conference series:

Abstract

This paper proposes the use of estimation of distribution algorithms to deal with the problem of finding an optimal product of braid generators in topological quantum computing. We investigate how the regularities of the braid optimization problem can be translated into statistical regularities by means of the Boltzmann distribution. The introduced algorithm obtains solutions with an accuracy in the order of 10− 6, and lengths up to 9 times shorter than those expected from braids of the same accuracy obtained with other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baluja, S., Davies, S.: Using optimal dependency-trees for combinatorial optimization: Learning the structure of the search space. In: Fisher, D.H. (ed.) Proceedings of the 14th International Conference on Machine Learning, pp. 30–38 (1997)

    Google Scholar 

  2. Bonesteel, N.E., Hormozi, L., Zikos, G., Simon, S.H.: Braid topologies for quantum computation. Physical Review Letters 95(14), 140503 (2005)

    Article  MathSciNet  Google Scholar 

  3. Dawson, C.M., Nielsen, M.A.: The Solovay-Kitaev algorithm. arXiv preprint quant-ph/0505030 (2005)

    Google Scholar 

  4. De Bonet, J.S., Isbell, C.L., Viola, P.: MIMIC: Finding optima by estimating probability densities. In: Mozer, et al. (eds.) Advances in Neural Information Processing Systems, vol. 9, pp. 424–430. The MIT Press, Cambridge (1997)

    Google Scholar 

  5. Henrion, M.: Propagating uncertainty in Bayesian networks by probabilistic logic sampling. In: Lemmer, J.F., Kanal, L.N. (eds.) Proceedings of the Second Annual Conference on Uncertainty in Artificial Intelligence, pp. 149–164. Elsevier (1988)

    Google Scholar 

  6. Hintze, J.L., Nelson, R.D.: Violin plots: a box plot-density trace synergism. The American Statistician 52(2), 181–184 (1998)

    Google Scholar 

  7. Larrañaga, P., Karshenas, H., Bielza, C., Santana, R.: A review on probabilistic graphical models in evolutionary computation. Journal of Heuristics 18(5), 795–819 (2012)

    Article  Google Scholar 

  8. McDonald, R.B., Katzgraber, H.G.: Genetic braid optimization: A heuristic approach to compute quasiparticle braids. Physical Review B 87(5), 054414 (2013)

    Google Scholar 

  9. Mühlenbein, H., Mahnig, T., Ochoa, A.: Schemata, distributions and graphical models in evolutionary optimization. Journal of Heuristics 5(2), 213–247 (1999)

    Article  Google Scholar 

  10. Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of distributions I. Binary parameters. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 178–187. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  11. Read, N., Rezayi, E.: Beyond paired quantum Hall states: parafermions and incompressible states in the first excited Landau level. Physical Review B 59(12), 8084 (1999)

    Article  Google Scholar 

  12. Santana, R., Bielza, C., Larrañaga, P.: Conductance interaction identification by means of Boltzmann distribution and mutual information analysis in conductance-based neuron models. BMC Neuroscience 13(suppl 1), P100 (2012)

    Google Scholar 

  13. Santana, R., Larrañaga, P., Lozano, J.A.: Protein folding in simplified models with estimation of distribution algorithms. IEEE Transactions on Evolutionary Computation 12(4), 418–438 (2008)

    Article  Google Scholar 

  14. Sarma, S.D., Freedman, M., Nayak, C.: Topological quantum computation. Physics Today 59(7), 32–38 (2006)

    Article  Google Scholar 

  15. Xu, H., Wan, X.: Constructing functional braids for low-leakage topological quantum computing. Physical Review A 78(4), 042325 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Santana, R., McDonald, R.B., Katzgraber, H.G. (2014). A Probabilistic Evolutionary Optimization Approach to Compute Quasiparticle Braids. In: Dick, G., et al. Simulated Evolution and Learning. SEAL 2014. Lecture Notes in Computer Science, vol 8886. Springer, Cham. https://doi.org/10.1007/978-3-319-13563-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13563-2_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13562-5

  • Online ISBN: 978-3-319-13563-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics