Abstract
Fitness landscape analysis provides insight into the structural features of optimization problems. Landscape analysis techniques have been individually shown to capture specific continuous landscape features. However, results are typically for benchmark and artificial problems, and so the ability of techniques to capture real-world problem structures remains largely unknown. In this paper we experimentally examine and compare the ability of length scale analysis, dispersion, fitness distance correlation, information content, partial information content and information stability to characterise and distinguish instances of circle packing problems. Circle packing problems are an important abstraction of many real-world problems such as container loading, facility dispersion and sensor network layout problems. Experiments on incrementally scaled packings show that while all of the techniques provide some problem insight, only length scale analysis and information stability were able to clearly differentiate problem instances.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Castillo, I., Kampas, F.J., Pintér, J.D.: Solving circle packing problems by global optimization: numerical results and industrial applications. European Journal of Operational Research 191(3), 786–802 (2008)
Gallagher, M.: Multi-layer perceptron error surfaces: visualization, structure and modelling. Ph.D. thesis, Dept. Computer Science and Electrical Engineering, University of Queensland (2000)
Gallagher, M.: Beware the parameters: Estimation of distribution algorithms applied to circles in a square packing. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part II. LNCS, vol. 7492, pp. 478–487. Springer, Heidelberg (2012)
Grosso, A., Jamali, A.R.M.J.U., Locatelli, M., Schoen, F.: Solving the problem of packing equal and unequal circles in a circular container. Journal of Global Optimization 47(1), 63–81 (2010)
Hansen, N., Auger, A., Finck, S., Ros, R.: Real-Parameter Black-Box Optimization Benchmarking: Experimental Setup. Technical report, INRIA (2013), http://coco.lri.fr/downloads/download13.09/bbobdocexperiment.pdf
Lunacek, M., Whitley, D.: The dispersion metric and the CMA evolution strategy. In: Genetic and Evolutionary Computation (GECCO), pp. 477–484. ACM (2006)
Malan, K.M., Engelbrecht, A.P.: Quantifying ruggedness of continuous landscapes using entropy. In: IEEE Congress on Evolutionary Computation (CEC), pp. 1440–1447 (2009)
Morgan, R., Gallagher, M.: Length scale for characterising continuous optimization problems. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 407–416. Springer, Heidelberg (2012)
Morgan, R., Gallagher, M.: Analysing and characterising optimization problems using length scale. IEEE Transactions on Evolutionary Computation (2014) (under review)
Morgan, R., Gallagher, M.: Sampling techniques and distance metrics in high dimensional continuous landscape analysis: Limitations and improvements. IEEE Transactions on Evolutionary Computation 18(3), 456–461 (2014)
Muñoz, M.A., Kirley, M., Halgamuge, S.K.: Landscape characterization of numerical optimization problems using biased scattered data. In: IEEE Congress on Evolutionary Computation (CEC), pp. 1180–1187 (2012)
Muñoz, M.A., Kirley, M., Halgamuge, S.K.: A meta-learning prediction model of algorithm performance for continuous optimization problems. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 226–235. Springer, Heidelberg (2012)
Müller, C.L., Sbalzarini, I.F.: Global characterization of the CEC 2005 fitness landscapes using fitness-distance analysis. In: Di Chio, C., et al. (eds.) EvoApplications 2011, Part I. LNCS, vol. 6624, pp. 294–303. Springer, Heidelberg (2011)
Müller, C., Baumgartner, B., Sbalzarini, I.: Particle swarm CMA evolution strategy for the optimization of multi-funnel landscapes. In: IEEE Congress on Evolutionary Computation (CEC), pp. 2685–2692 (2009)
Pitzer, E., Affenzeller, M.: A comprehensive survey on fitness landscape analysis. In: Fodor, J., Klempous, R., Suárez Araujo, C.P. (eds.) Recent Advances in Intelligent Engineering Systems. SCI, vol. 378, pp. 161–191. Springer, Heidelberg (2012)
Sheather, S.J., Jones, M.C.: A reliable data-based bandwidth selection method for kernel density estimation. Journal of the Royal Statistical Society. Series B (Methodological) 53(3), 683–690 (1991)
Specht, E.: Packomania (2012), http://www.packomania.com
Szabó, P.G., Markót, M.C., Csendes, T.: Global optimization in geometry – circle packing into the square. In: Essays and Surveys in Global Optimization, pp. 233–265. Springer (2005)
Vassilev, V.K., Fogarty, T.C., Miller, J.F.: Information characteristics and the structure of landscapes. Evolutionary Computation 8, 31–60 (2000)
Whitley, D., Lunacek, M., Sokolov, A.: Comparing the niches of CMA-ES, CHC and pattern search using diverse benchmarks. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 988–997. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Morgan, R., Gallagher, M. (2014). Fitness Landscape Analysis of Circles in a Square Packing Problems. In: Dick, G., et al. Simulated Evolution and Learning. SEAL 2014. Lecture Notes in Computer Science, vol 8886. Springer, Cham. https://doi.org/10.1007/978-3-319-13563-2_39
Download citation
DOI: https://doi.org/10.1007/978-3-319-13563-2_39
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-13562-5
Online ISBN: 978-3-319-13563-2
eBook Packages: Computer ScienceComputer Science (R0)