Skip to main content

Improving Efficiency of Heuristics for the Large Scale Traveling Thief Problem

  • Conference paper
Simulated Evolution and Learning (SEAL 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8886))

Included in the following conference series:

Abstract

The Traveling Thief Problem (TTP) is a novel problem that combines the well-known Traveling Salesman Problem (TSP) and Knapsack Problem (KP). In this paper, the complexity of the local-search-based heuristics for solving TTP is analyzed, and complexity reduction strategies for TTP are proposed to speed up the heuristics. Then, a two-stage local search process with fitness approximation schemes is designed to further improve the efficiency of heuristics. Finally, an efficient Memetic Algorithm (MA) with the two-stage local search is proposed to solve the large scale TTP. The experimental results on the tested large scale TTP benchmark instances showed that the proposed MA can obtain competitive results within a very short time frame for the large scale TTP. This suggests the potential benefits of designing intelligent divide-and-conquer strategies that solves the sub-problems separately while taking the interdependence between them into account.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonyadi, M., Michalewicz, Z., Barone, L.: The travelling thief problem: the first step in the transition from theoretical problems to realistic problems. In: Proceedings of the 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico, pp. 1037–1044 (2013)

    Google Scholar 

  2. Mei, Y., Tang, K., Yao, X.: Improved memetic algorithm for capacitated arc routing problem. In: Proceedings of the 2009 IEEE Congress on Evolutionary Computation, pp. 1699–1706 (2009)

    Google Scholar 

  3. Mei, Y., Tang, K., Yao, X.: Decomposition-based memetic algorithm for multiobjective capacitated arc routing problem. IEEE Transactions on Evolutionary Computation 15(2), 151–165 (2011)

    Article  Google Scholar 

  4. Mei, Y., Tang, K., Yao, X.: A Memetic Algorithm for Periodic Capacitated Arc Routing Problem. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 41(6), 1654–1667 (2011)

    Article  Google Scholar 

  5. Mei, Y., Li, X., Yao, X.: Cooperative co-evolution with route distance grouping for large-scale capacitated arc routing problems. IEEE Transactions on Evolutionary Computation 18(3), 435–449 (2014)

    Article  Google Scholar 

  6. Christofides, N.: The optimum traversal of a graph. Omega 1(6), 719–732 (1973)

    Article  Google Scholar 

  7. Applegate, D., Cook, W., Rohe, A.: Chained lin-kernighan for large traveling salesman problems. INFORMS Journal on Computing 15(1), 82–92 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Helsgaun, K.: An effective implementation of the lin–kernighan traveling salesman heuristic. European Journal of Operational Research 126(1), 106–130 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dorigo, M., Gambardella, L.: Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997)

    Article  Google Scholar 

  10. Bentley, J.: K-d trees for semidynamic point sets. In: Proceedings of the Sixth Annual Symposium on Computational Geometry, pp. 187–197. ACM (1990)

    Google Scholar 

  11. Bentley, J.L.: Fast algorithms for geometric traveling salesman problems. ORSA Journal on computing 4(4), 387–411 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. Delaunay, B.: Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk 7, 793–800 (1934)

    Google Scholar 

  13. Reinelt, G.: Fast heuristics for large geometric traveling salesman problems. ORSA Journal on Computing 4(2), 206–217 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Yao, X.: Simulated annealing with extended neighbourhood. International Journal of Computer Mathematics 40(3), 169–189 (1991)

    Article  MATH  Google Scholar 

  15. Yao, X.: Dynamic neighbourhood size in simulated annealing. In: Proceedings of International Joint Conference on Neural Networks (IJCNN 1992), vol. 1, pp. 411–416 (1992)

    Google Scholar 

  16. Mei, Y., Tang, K., Yao, X.: A Global Repair Operator for Capacitated Arc Routing Problem. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 39(3), 723–734 (2009)

    Article  Google Scholar 

  17. Tang, K., Mei, Y., Yao, X.: Memetic Algorithm with Extended Neighborhood Search for Capacitated Arc Routing Problems. IEEE Transactions on Evolutionary Computation 13(5), 1151–1166 (2009)

    Article  Google Scholar 

  18. Krasnogor, N., Moscato, P., Norman, M.G.: A new hybrid heuristic for large geometric traveling salesman problems based on the delaunay triangulation. In: Anales del XXVII Simposio Brasileiro de Pesquisa Operacional, Citeseer, pp. 6–8 (1995)

    Google Scholar 

  19. Žalik, B.: An efficient sweep-line delaunay triangulation algorithm. Computer-Aided Design 37(10), 1027–1038 (2005)

    Article  Google Scholar 

  20. Fredman, M.L., Johnson, D.S., McGeoch, L.A., Ostheimer, G.: Data structures for traveling salesmen. Journal of Algorithms 18(3), 432–479 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  21. Goldberg, D., Lingle, R.: Alleles, loci, and the traveling salesman problem. In: Proceedings of the First International Conference on Genetic Algorithms and their Applications, pp. 154–159. Lawrence Erlbaum Associates, Publishers (1985)

    Google Scholar 

  22. Polyakovskiy, S., Bonyadi, M.R., Wagner, M., Michalewicz, Z., Neumann, F.: A comprehensive benchmark set and heuristics for the traveling thief problem. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO), pp. 477–484 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Mei, Y., Li, X., Yao, X. (2014). Improving Efficiency of Heuristics for the Large Scale Traveling Thief Problem. In: Dick, G., et al. Simulated Evolution and Learning. SEAL 2014. Lecture Notes in Computer Science, vol 8886. Springer, Cham. https://doi.org/10.1007/978-3-319-13563-2_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13563-2_53

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13562-5

  • Online ISBN: 978-3-319-13563-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics