Skip to main content

NFL Results Predictor as a Smart Mobile Application

  • Conference paper
Afro-European Conference for Industrial Advancement

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 334))

  • 2192 Accesses

Abstract

This paper introduces the chosen area and problems which are connected to the forecasting of the results of American football games in National Football League (NFL). We cover the existing mobile applications for forecasting results which are analysed as a non-complex solutions with only limited prediction success ratio. We found that is possible to cover many other information sources to make a more complex analysis of each game and have a prediction based on a deep knowledge from match history. The suggested solution consists of a separate mobile application whose draft and implementation is described in the paper. Our algorithms implemented in developed solution provide a much better prediction success ratio than other mobile application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Behan, M., Krejcar, O.: Modern Smart Device-Based Concept of Sensoric Networks. EURASIP Journal on Wireless Communications and Networking 155(1) (2013)

    Google Scholar 

  2. Gantulga, E., Krejcar, O.: Smart Access to Big Data Storage – Android Multi-language Offline Dictionary Application. In: Nguyen, N.-T., Hoang, K., JÄ™drzejowicz, P. (eds.) ICCCI 2012, Part I. LNCS, vol. 7653, pp. 375–384. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Machacek, Z., Slaby, R., Hercik, R., Koziorek, J.: Advanced system for consumption meters with recognition of video camera signal. Elektronika ir Elektrotechnika 18(10), 57–60 (2012)

    Article  Google Scholar 

  4. Vanus, J., Novak, T., Koziorek, J., Konecny, J., Hrbac, R.: The proposal model of energy savings of lighting systems in the smart home care. IFAC Proceedings 12(pt.1), 411–415 (2013)

    Google Scholar 

  5. Vanus, J., Koziorek, J., Hercik, R.: Design of a smart building control with view to the senior citizens’ needs. IFAC Proceedings Volumes (IFAC-Papers Online) 12(pt.1), 422–427 (2013)

    Google Scholar 

  6. Machaj, J., Brida, P.: Performance comparison of similarity measurements for database correlation localization method. In: Nguyen, N.T., Kim, C.-G., Janiak, A. (eds.) ACIIDS 2011, Part II. LNCS, vol. 6592, pp. 452–461. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Michal, M., Peter, B., Machaj, J.: Modular localization system for intelligent transport. In: Badica, A., Trawinski, B., Nguyen, N.T. (eds.) Recent Developments in Computational Collective Intelligence. SCI, vol. 513, pp. 115–124. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  8. Penhaker, M., Krejcar, O., Kasik, V., Snášel, V.: Cloud Computing Environments for Biomedical Data Services. In: Yin, H., Costa, J.A.F., Barreto, G. (eds.) IDEAL 2012. LNCS, vol. 7435, pp. 336–343. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Behan, M., Krejcar, O.: Smart Communication Adviser for Remote Users. In: Zgrzywa, A., ChoroÅ›, K., SiemiÅ„ski, A. (eds.) Multimedia and Internet Systems: Theory and Practice. AISC, vol. 183, pp. 169–178. Springer, Heidelberg (2012)

    Google Scholar 

  10. Benikovsky, J., Brida, P., Machaj, J.: Proposal of User Adaptive Modular Localization System for Ubiquitous Positioning. In: Pan, J.-S., Chen, S.-M., Nguyen, N.T. (eds.) ACIIDS 2012, Part II. LNCS, vol. 7197, pp. 391–400. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Krejcar, O.: Threading Possibilities of Smart Devices Platforms for Future User Adaptive Systems. In: Pan, J.-S., Chen, S.-M., Nguyen, N.T. (eds.) ACIIDS 2012, Part II. LNCS, vol. 7197, pp. 458–467. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Li, C., Cheng, H.H.: Intelligent Forecasting of S&P 500 Time Series — A Self-organizing Fuzzy Approach. In: Nguyen, N.T., Kim, C.-G., Janiak, A. (eds.) ACIIDS 2011, Part II. LNCS, vol. 6592, pp. 411–420. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Kakrda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kakrda, P., Berger, O., Krejcar, O. (2015). NFL Results Predictor as a Smart Mobile Application. In: Abraham, A., Krömer, P., Snasel, V. (eds) Afro-European Conference for Industrial Advancement. Advances in Intelligent Systems and Computing, vol 334. Springer, Cham. https://doi.org/10.1007/978-3-319-13572-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13572-4_28

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13571-7

  • Online ISBN: 978-3-319-13572-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics