Abstract
This paper addresses the use of spoken language technologies to identify cognitive impairment through the degree of speech deficits. We present the design of a spoken language database where patients’ voices are collected during regular clinical screening tests for cognitive impairment. Three different speaking styles are recorded: dialogues during structured interviews, readings of a short-passage and verbal picture descriptions. We hope these different spoken materials will help promoting the research on a wide range of spoken language technologies in assessing Moderate Cognitive Impairment (MCI). To illustrate this, a preliminary analysis on the speech recorded from a small group of MCI patients and healthy elder controls is also presented. A Random Forest classifier working on seven prosodic measures extracted from the reading task achieved 78.9% accuracy for MCI detection when compared with a control group, suggesting that these measures can offer a sensitive method of assessing speech output in MCI. This experimental framework shows the potential of the presented spoken language database for the research on automatic and objective identification of early symptoms of MCI in elderly adults.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Llibre, J.J.: Aging and dementia: implications for the scientist community, public health and Cuban society. Rev. Academia de Ciencias de Cuba 2(2), 36–54 (2012)
Montenegro Peña, M., Montejo Carrascoa, P., LlaneroLuquea, M., Reinoso García, A.I.: Evaluación y diagnóstico del deterioro cognitivo leve. Revista de Logopedia, Foniatría y Audiología 32, 47–56 (2012)
De Leon, M.J., De Santi, S., Zinkowski, R., Mehta, P.D., Pratico, D., Segal, S., Clark, C., Kerkman, D., De Bernardis, J., Li, J., Lair, L., Reisberg, B., Tsui, W., Rusinek, H.: MRI and CSF studies in the early diagnosis of Alzheimer’s disease. Journal of Internal Medicine 256, 205–223 (2004)
De Leon, M.J., Mosconi, L., Blennow, K., DeSanti, S., Zinkowski, R., Mehta, P.D., Rusinek, H.: Imaging and CSF studies in the preclinical diagnosis of Alzheimer’s disease. Annals of the New York Academy of Sciences 1097(1), 114–145 (2007)
Folstein, M.F., Folstein, S.E., McHugh, P.R.: Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12(3), 189–198 (1975)
Morris, J.C.: The Clinical Dementia Rating (CDR): current version and scoring rules. J. Neurology 43, 2412–2414 (1993)
Buschke, H., Kuslansky, G., Katz, M., Stewart, W.F., Sliwinski, M.J., Eckholdt, H.M., Lipton, R.B.: Screening for dementia with the Memory Impairment Screen. Neurology 52(2), 231–238 (1999)
Deramecourt, D., Lebert, F., Debachy, B., Mackowiak-Cordoliani, M.A., Bombois, S., Kerdraon, O., et al.: Prediction of pathology in primary progressive language and speech disorders. Neurology 74, 42–49 (2010)
Mesulam, M., Wicklund, A., Johnson, N., Rogalski, E., Léger, G.C., Ra-demaker, A., et al.: Alzheimer and frontotemporal pathology in subsets of primary progressive aphasia. Annual Neurology 63, 709–719 (2008)
Lehr, M., Prud’hommeaux, E., Shafran, I., Roark, B.: Fully automated neuropsychological assessment for detecting mild cognitive impairment. In: Interspeech 2012 (2012)
Hakkani-Tür, D., Vergyri, D., Tür, G.: Speech-based automated cognitive status assessment. In: INTERSPEECH, pp. 258–261 (2010)
Kato, S., Endo, H., Homma, A., Sakuma, T., Watanabe, K.: Early detection of cognitive impairment in the elderly based on Bayesian mining using speech prosody and cerebral blood flow activation. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5813–5816 (2013)
Thomas, C., Keselj, V., Cercone, N., Rockwood, K., Asp, E.: Automatic detection and rating of dementia of Alzheimer type through lexical analysis of spontaneous speech. In: 2005 IEEE International Conference on Mechatronics and Automation, vol. 3, pp. 1569–1574 (2005)
Bucks, R.S., Singh, S., Cuerden, J.M., Wilcock, G.K.: Analysis of spontaneous, conversational speech in dementia of Alzheimer type: Evaluation of an objective technique for analysing lexical performance. Aphasiology 14, 71–91 (2000)
Rochford, I., Rapcan, V., D’Arcy, S., Reilly, R.B.: Dynamic minimum pause threshold estimation for speech analysis in studies of cognitive function in ageing. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3700–3703 (2012)
Martínez-Sánchez, F., Meilán, J.J.G., García-Sevilla, J., Carro, J., Arana, J.M.: Análisis de la fluencialectora en pacientes con la enfermedad de Alzheimer y controles asintomáticos. Neurología 28(6), 325–331 (2013)
Darley, F.L., Aronson, A.E., Brown, J.R.: Motor speech disorders, 3rd edn. W.B. Saunders Company, Philadelphia (1975)
Risser, A.H., Spreen, O.: The western aphasia battery. Journal of Clinical and Experimental Neuropsychology 7(4), 463–470 (1985)
Mertens, P.: Automatic segmentation of speech into syllables. In: Laver, J., Jack, M. (eds.) Proceedings of the European Conference on Speech Technology, Edinburgh, vol. 2, pp. 9–12 (1987)
Massey Jr., F.J.: The Kolmogorov-Smirnov test for goodness of fit. Journal of the American Statistical Association 46(253), 68–78 (1951)
Breiman, L.: Random Forest. Machine Learning 45, 5–32 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Espinoza-Cuadros, F. et al. (2014). A Spoken Language Database for Research on Moderate Cognitive Impairment: Design and Preliminary Analysis. In: Navarro Mesa, J.L., et al. Advances in Speech and Language Technologies for Iberian Languages. Lecture Notes in Computer Science(), vol 8854. Springer, Cham. https://doi.org/10.1007/978-3-319-13623-3_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-13623-3_23
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-13622-6
Online ISBN: 978-3-319-13623-3
eBook Packages: Computer ScienceComputer Science (R0)