Skip to main content

Comparison and Analysis of Models to Predict the Motion of Segmented Regions by Optical Flow

  • Conference paper
Human-Inspired Computing and Its Applications (MICAI 2014)

Abstract

Computer vision systems can predict the motion of objects if the movement behavior is analyzed over time, ie, it is possible to find out future values based on previously observed values. In this paper we present an statistical analysis which is aimed to compare two models to predict the position of moving objects in next frames. The models presented are the Kalman filter and an analysis of time series using an ARIMA model. Scenarios with different characteristics are presented as test cases. Segmentation of moving objects is done through the clustering of optical flow vectors for similarity, which are obtained by Pyramid Lucas and Kanade algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Szeliski, R.: Computer Vision. Algorithms and Applications. Springer, USA (2013) ISBN: 978-184882-935-0

    Google Scholar 

  2. Horn, P.: Robot Vision. The MIT Press, USA (1993) ISBN: 0-262-08159-8

    Google Scholar 

  3. Negahdaripour, S.: A direct Method for locating the Focus of Expansion, Tecnical Report. A. I. Memo No 939 (1987)

    Google Scholar 

  4. Gibson, J.J.: The Perception of the Visual World. Riverside Press, Cambridge (1950)

    Google Scholar 

  5. Gibson, J.J.: The Senses Considered as Perceptual Systems, Houghton-Mi Win, Boston (1966)

    Google Scholar 

  6. Mora, D., Paez, A., Quiroga, J.: Deteccion de objetos Moviles en una Escena utilizando Flujo optico. In: XIV Simposio de tratamiento de señales, imagenes y vision artificial, STSIVA 2009 (2009)

    Google Scholar 

  7. Sanchez, A., Rios, H., Marin, A., Acosta, H.: Tracking and Prediction of Motion of Segmented Regions Using the Kalman Filter. In: Proceedings of the CONIELECOMP 2014, vol. 3, pp. 88–93. IEEE (2014), doi:ISBN:978-1-4799-3468-3

    Google Scholar 

  8. Rajagopalan, R., Orchard, M.T., Brandt, R.D.: Motion Field Modeling for Video Sequences. IEEE Transactions on Image Processing 6(11) (1997)

    Google Scholar 

  9. Elnagar, A., Gupta, K.: Motion Prediction of Moving Objects Based on Autoregressive Model, Systems, Man and Cybernetics. IEEE Transactions on Part A: Systems and Humans 28(6) (1998)

    Google Scholar 

  10. Wei, D., Ye, J., Wu, X., Liang, L.: Time Series Prediction for Generalized Heave Displacement of a Shipborne Helicopter Platform. In: SECS International Colloquium on Computing, Communication, Control, and Management (2008) (2008)

    Google Scholar 

  11. Jun, L., Sumei, W., Ke, P., Jun, X., Yun, W., Tao, Z.: Research on On-line Measurement and Prediction for Vehicle Motion State. In: International Conference on Digital Manufacturing and Automation (2010)

    Google Scholar 

  12. Ichiji, K., Sakai, M., Homma, N., Takai, Y., Yoshizawa, M.: Lung Tumor Motion Prediction Based On Multiple Time-Variant Seasonal Autoregressive Model for Tumor Following Radiotherapy. In: IEEE/SICE International Symposium System Integration, SII (2010)

    Google Scholar 

  13. Ichiji, K., Homma, N., Sakai, M., Takai, Y., Narita, Y., Abe, M., Sugita, N., Yoshizawa, M.: Respiratory Motion Prediction for Tumor Following Radiotherapy by using Time-variant Seasonal Autoregressive Techniques. In: 34th Annual International Conference of the IEEE EMBS (2012)

    Google Scholar 

  14. Huang, S.H., Tsao, J., Yang, T.C., Cheng, S.: Model-Based Signal Subspace Channel Tracking for Correlated Underwater Acoustic Communication Channels. IEEE Journal of Oceanic Engineering 39(2) (2014)

    Google Scholar 

  15. Man, T., Wong, S.C., Jian, X., Zhan, G.: An Aggregation Approach to Short-Term Traffic Flow Prediction. IEEE Transactions on Intelligent Transportation Systems 10(1) (2009)

    Google Scholar 

  16. Tok, M., Esche, M., Sikora, T.: A dynamic model buffer for parametric motion vector prediction in random-access coding scenarios. In: IEEE International Conference on Image Processing, ICIP (2013)

    Google Scholar 

  17. Vandendorpe, L., Cuvelier, L., Maison, B.: Statistical properties of prediction error images in motion compensated interlaced image coding. In: Proceedings of the International Conference on Image Processing, vol. 3 (1995)

    Google Scholar 

  18. Shan, M., Worrall, S., Masson, F., Nebot, E.: Using Delayed Observations for Long-Term Vehicle Tracking in Large Environments. IEEE Transactions on Intelligent Transportation Systems (2014)

    Google Scholar 

  19. Hardy, J., Havlak, F., Campbell, M.: Multiple-step prediction using a two stage Gaussian Process model. In: American Control Conference, ACC (2014)

    Google Scholar 

  20. Albrecht, D.G., Geisler, W.S.: Motion selectivity and the contrast-respons function of simple cells in the visual cortex. In: Vis. Neurosci., pp. 531–546 (1991)

    Google Scholar 

  21. Sanchez, A., Rios, H.: Segmentacion de objetos en movimiento por flujo optico y color sin informacion a priori de la escena, Research in computing science. Avances en Inteligencia Artificial 62, 151–160 (2013)

    Google Scholar 

  22. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of the 4th Alvey Vision Conference, pp. 147–151 (1988)

    Google Scholar 

  23. Shi, J., Tomassi, J.: Good features to track. In: 9th IEEE Conference on Computer Vision and Pattern Recognition (1994)

    Google Scholar 

  24. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of the 1981 DARPA Imaging Understanding Workshop, pp. 121–130 (1981)

    Google Scholar 

  25. Kalman, R.: A new approach to linear filtering and prediction problems. Journal of Basic Engineering 82, 35–45 (1960)

    Article  Google Scholar 

  26. Bradski, G., Kaebler, A.: Learning OpenCV. Computer vision with the OpenCV library, 1st edn. Oreilly (2008)

    Google Scholar 

  27. Haykin, S.: Nonlinear Method of Spectral Analysis. Springer (1979)

    Google Scholar 

  28. Kay, S.M., Marple, S.L.: Spectrum Analysis- a modern perspective. Proc. IEEE 69, 1380–1419 (1981)

    Article  Google Scholar 

  29. Hansun, S.: A New Approach of Moving Average Method in Time Series Analysis, Microwave Symposium Digest. New Media Studies (CoNMedia) (2013)

    Google Scholar 

  30. StatXact, Statistical software for Exact Nonparametric Inference, user manual, Cytel Statistical Software (2004)

    Google Scholar 

  31. Phillps, P., Perron, P.: Testing fr a unit root in time series regression. Biometrika, vol 7(2), 335–346 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Sanchez Garcia, A.J., de Lourdes Velasco Vazquez, M., Rios Figueroa, H.V., Marin Hernandez, A., Contreras Vega, G. (2014). Comparison and Analysis of Models to Predict the Motion of Segmented Regions by Optical Flow. In: Gelbukh, A., Espinoza, F.C., Galicia-Haro, S.N. (eds) Human-Inspired Computing and Its Applications. MICAI 2014. Lecture Notes in Computer Science(), vol 8856. Springer, Cham. https://doi.org/10.1007/978-3-319-13647-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13647-9_27

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13646-2

  • Online ISBN: 978-3-319-13647-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics