Skip to main content

An Effective Visual Descriptor Based on Color and Shape Features for Image Retrieval

  • Conference paper
Human-Inspired Computing and Its Applications (MICAI 2014)

Abstract

In this paper we present a Content-Based Image Retrieval (CBIR) system which extracts color features using Dominant Color Correlogram Descriptor (DCCD) and shape features using Pyramid Histogram of Oriented Gradients (PHOG). The DCCD is a descriptor which extracts global and local color features, whereas the PHOG descriptor extracts spatial information of shape in the image. In order to evaluate the image retrieval effectiveness of the proposed scheme, we used some metrics commonly used in the image retrieval task such as, the Average Retrieval Precision (ARP), the Average Retrieval Rate (ARR) and the Average Normalized Modified Retrieval Rank (ANMRR) and the Average Recall (R)-Average Precision (P) curve. The performance of the proposed algorithm is compared with some other methods which combine more than one visual feature (color, texture, shape). The results show a better performance of the proposed method compared with other methods previously reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Penatti, O., Valle, E., Torres, S.: Comparative study of global color and texture descriptors for web image retrieval. J. Vis. Comm. Image Representation 23, 359–380 (2012)

    Article  Google Scholar 

  2. Wang, X.Y., Yu, Y.J., Yang, H.Y.: An effective image retrieval scheme using color, texture and shape features. Computer Standards & Interfaces 33, 59–68 (2011)

    Article  Google Scholar 

  3. Jalab, H.A.: Image retrieval system based on color layout descriptor and global filters. In: IEEE Conf. on Open System, pp. 32–36 (2011)

    Google Scholar 

  4. Pujari, J., Hiremath, P.: Content-based image retrieval based on color, texture and shape features. Signal and Image Processing, 239–242 (2010)

    Google Scholar 

  5. Hafiane, A., Zavidovique, B.: Local relational string and mutual matching doe image retrieval. Information Processing &Manegement 44, 1201–1212 (2008)

    Article  Google Scholar 

  6. Kavitha, C., Prabhakara, B., Govardhan, A.: Image retrieval based on color and texture features of the image subblocks. Int. J. Comput. Appl. 15, 33–37 (2011)

    Google Scholar 

  7. Fierro, A., Perez, K., Nakano, M., Benois, J.: Dominant color correlogram descriptor for content-based image retrieval. In: 3rd Int. Conf. on Image, Vision and Computing (2014)

    Google Scholar 

  8. Yang, B., Guo, L., Jin, L., Huang, Q.: A novel feature extraction method using pyramid histogram of orientation gradients for smile recognition. In: 16th IEEE Int. Conf. on Image Processing, pp. 3305–3308 (2009)

    Google Scholar 

  9. Shao, H., Wu, Y., Cui, W., Zhang, J.: Image retrieval based on MPEG-7 dominant color descriptor. In: 9th Int. Conf. for Young Scientist, pp. 753–757 (2008)

    Google Scholar 

  10. Yang, N., Chang, W., Kuo, C., Li, T.: A fast MPEG-7 dominant color extraction with new similarity measure for image retrieval. J. of Vis. Commum. & Image Representation 19, 92–105 (2008)

    Article  Google Scholar 

  11. Johnson, G., Song, X., Montag, E., Fairchild, M.: Derivation of a color space for image color difference measurement. Color Research and Appl. 5, 387–400 (2010)

    Article  Google Scholar 

  12. Talib, A., Mahmuddin, M., Husni, H., Loay, E.G.: A weighted dominant color descriptor for content-based image retrieval. J. of Vis. Commun. & Image Representation 24, 345–360 (2013)

    Article  Google Scholar 

  13. Swain, M., Ballard, D.: Color indexing. Int. J. of Computer Vision 7, 11–32 (1991)

    Article  Google Scholar 

  14. Fierro, A., Nakano, M., Perez, H., Cedillo, M., Garcia, F.: An efficient color descriptor based on global and local color features for image retrieval. In: Int. Conf. on Elect. Eng. Comput. Science and Automatic Control, pp. 233–238 (2013)

    Google Scholar 

  15. Huang, J., Kumar, S., Mitra, M., Zhu, W., Zabih, R.: Image indexing using color correlogram. In: Conf. on Computer Vision Pattern Recognition, pp. 762–768 (1997)

    Google Scholar 

  16. Bleschke, M., Madonski, R., Rudnicki, R.: Image retrieval system based on combined MPEG-7 texture and color descriptors. In: Int. Conf. Mixed Design of Integrated Circuit and Systems, pp. 635–639 (2009)

    Google Scholar 

  17. Wong, K., Po, L., Cheung, K.: Dominant color structure descriptor for image retrieval. IEEE Trans. on PAMI 32, 1259–1270 (2010)

    Article  Google Scholar 

  18. Yap, P., Jiang, X., Kot, C.: Two-dimensional polar harmonic transform for invariant image representation. IEEE Trans. on PAMI 32, 1259–1270 (2010)

    Article  Google Scholar 

  19. Li, J., Wang, J.: Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Trans on PAMI 25, 1075–1088 (2003)

    Article  Google Scholar 

  20. Wang, J., Li, J., Wiederhold, G.: SIMPLIcity semantic-sensitive integrated matching for picture libraries. IEEE Trans. on PAMI 23, 947–964 (2001)

    Article  Google Scholar 

  21. Kasutani, E., Yamada, A.: The MPEG-7 color layout descriptor: A compact image feature description for high-speed image/video segment retrieval. In: Int. Conf. on Image Processing, pp. 674–667 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Fierro-Radilla, A., Perez-Daniel, K., Nakano-Miyatakea, M., Perez-Meana, H., Benois-Pineau, J. (2014). An Effective Visual Descriptor Based on Color and Shape Features for Image Retrieval. In: Gelbukh, A., Espinoza, F.C., Galicia-Haro, S.N. (eds) Human-Inspired Computing and Its Applications. MICAI 2014. Lecture Notes in Computer Science(), vol 8856. Springer, Cham. https://doi.org/10.1007/978-3-319-13647-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13647-9_31

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13646-2

  • Online ISBN: 978-3-319-13647-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics