Abstract
Horizontal partitioning is a database design technique widely used in relational databases in order to achieve query optimization. Recently, this technique has been applied in multimedia databases to improve query execution cost in these databases. Nevertheless, current algorithms are based on affinity between predicates to obtain an horizontal partitioning scheme (HPS). Affinity measures how a pair of predicates is accessed by the queries (“togetherness”). The main disadvantage of this measure is that it only involves two predicates, and hence does not show the “togetherness” of more than two predicates. In this paper we propose an horizontal partitioning method for multimedia databases which is based on a hierarchical agglomerative clustering algorithm. The main advantage of our method is that it does not use affinity to create the HPS. We present experimental results to clarify the soundness of the proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bellatreche, L., Karlapalem, K., Simonet, A.: Algorithms and support for horizontal class partitioning in object-oriented databases. Distrib. Parallel Databases 8(2), 155–179 (2000)
Ceri, S., Negri, M., Pelagatti, G.: Horizontal data partitioning in database design. In: Proceedings of the 1982 ACM SIGMOD International Conference on Management of Data, SIGMOD 1982, pp. 128–136. ACM, New York (1982)
Chakravarthy, S., Muthuraj, J., Varadarajan, R., Navathe, S.B.: An objective function for vertically partitioning relations in distributed databases and its analysis. Distrib. Parallel Databases 2(2), 183–207 (1994)
Chbeir, R., Laurent, D.: Towards a novel approach to multimedia data mixed fragmentation. In: Proceedings of the International Conference on Management of Emergent Digital EcoSystems, MEDES 2009, pp. 30:200–30:204. ACM, New York (2009)
Chbeir, R., Laurent, D.: Enhancing multimedia data fragmentation. Journal of Multimedia Processing and Technologies 1(2), 112–131 (2010)
Cheng, C.H., Lee, W.K., Wong, K.F.: A genetic algorithm-based clustering approach for database partitioning. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 32(3), 215–230 (2002)
Chu, W.W., Ieong, I.T.: A transaction-based approach to vertical partitioning for relational database systems. IEEE Trans. Softw. Eng. 19(8), 804–812 (1993)
Ezeife, C.I., Barker, K.: A comprehensive approach to horizontal class fragmentation in a distributed object based system. Distrib. Parallel Databases 3(3), 247–272 (1995)
Getahun, F., Tekli, J., Atnafu, S., Chbeir, R.: The use of semantic-based predicates implication to improve horizontal multimedia database fragmentation. In: Workshop on Multimedia Information Retrieval on The Many Faces of Multimedia Semantics, MS 2007, pp. 29–38. ACM, New York (2007)
Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edn. Morgan Kaufmann Publishers Inc., San Francisco (2011)
Khalil, N., Eid, D., Khair, M.: Availability and reliability issues in distributed databases using optimal horizontal fragmentation. In: Bench-Capon, T.J.M., Soda, G., Tjoa, A.M. (eds.) DEXA 1999. LNCS, vol. 1677, pp. 771–780. Springer, Heidelberg (1999)
Khan, S.I., Hoque, D.A.S.M.L.: A new technique for database fragmentation in distributed systems. International Journal of Computer Applications 5(9), 20–24 (2010)
Ma, H.: Distribution Design for Complex Value Databases. Ph.D. thesis, Massey University (2007)
Murty, M., Rashmin, B., Bhattacharyya, C.: Clustering based on genetic algorithms. In: Ghosh, A., Dehuri, S., Ghosh, S. (eds.) Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases. SCI, vol. 98, pp. 137–159. Springer, Heidelberg (2008)
Navathe, S., Karlapalem, K., Ra, M.: A mixed fragmentation methodology for initial distributed database design. Journal of Computer and Software Engineering 3(4), 395–426 (1995)
Navathe, S.B., Ra, M.: Vertical partitioning for database design: A graphical algorithm. In: Proceedings of the 1989 ACM SIGMOD International Conference on Management of Data, SIGMOD 1989, pp. 440–450. ACM, New York (1989)
Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems, 3rd edn. Springer (2011)
Rodriguez, L., Li, X.: A vertical partitioning algorithm for distributed multimedia databases. In: Hameurlain, A., Liddle, S.W., Schewe, K.-D., Zhou, X. (eds.) DEXA 2011, Part II. LNCS, vol. 6861, pp. 544–558. Springer, Heidelberg (2011)
Rodríguez, L., Li, X., Cervantes, J., García-Lamont, F.: Dymond: An active system for dynamic vertical partitioning of multimedia databases. In: Proceedings of the 16th International Database Engineering & Applications Sysmposium, IDEAS 2012, pp. 71–80. ACM, New York (2012)
Saad, S., Tekli, J., Chbeir, R., Yétongnon, K.: Towards multimedia fragmentation. In: Manolopoulos, Y., Pokorný, J., Sellis, T.K. (eds.) ADBIS 2006. LNCS, vol. 4152, pp. 415–429. Springer, Heidelberg (2006)
Shin, D.G., Irani, K.B.: Fragmenting relations horizontally using a knowledge-based approach. IEEE Trans. Softw. Eng. 17(9), 872–883 (1991)
Son, J.H., Kim, M.H.: An adaptable vertical partitioning method in distributed systems. Journal of Systems and Software 73(3), 551–561 (2004)
Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Techniques, 3rd edn. Morgan Kaufmann Publishers Inc., San Francisco (2011)
Zhang, Y., Orlowska, M.E.: On fragmentation approaches for distributed database design. Information Sciences - Applications 1(3), 117–132 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Rodríguez-Mazahua, L., Alor-Hernández, G., Abud-Figueroa, M.A., Peláez-Camarena, S.G. (2014). Horizontal Partitioning of Multimedia Databases Using Hierarchical Agglomerative Clustering. In: Gelbukh, A., Espinoza, F.C., Galicia-Haro, S.N. (eds) Nature-Inspired Computation and Machine Learning. MICAI 2014. Lecture Notes in Computer Science(), vol 8857. Springer, Cham. https://doi.org/10.1007/978-3-319-13650-9_27
Download citation
DOI: https://doi.org/10.1007/978-3-319-13650-9_27
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-13649-3
Online ISBN: 978-3-319-13650-9
eBook Packages: Computer ScienceComputer Science (R0)