Abstract
In this paper, a new method for fuzzy inference system optimization is proposed. The optimization consists in find the optimal parameters of fuzzy inference system used to combine the responses of modular neural networks using a hierarchical genetic algorithm. The optimized parameters are: type of fuzzy logic (type-1 and interval type-2), type of system (Mamdani or Sugeno), type of membership functions, number of membership functions in each variable (inputs and output), their parameters and the consequents of the fuzzy rules. Four benchmark databases are used to test the proposed method where, each database is a different biometric measure (face, iris, ear and voice) and each database is learned by a modular neural network. The main objective of the fuzzy inference system is to combine the different responses of the modular neural network and achieve final good results even when one (o more) biometric measure has individually a bad result. The results obtained in a previous work are used to compare with the results obtained in this paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abiyev, R., Altunkaya, K.: Personal Iris Recognition Using Neural Network, Near East University, Department of Computer Engineering, Lefkosa, North Cyprus (April 2008)
Azamm, F.: Biologically Inspired Modular Neural Networks. PhD thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia (May 2000)
Carreira, M.: Aplicación de las redes neuronales de compresión a la extracción de características para el reconocimiento a partir de imágenes de la oreja. Universidad Politécnica de Madrid, España (September 1995)
Castillo, O., Melin, P.: Type-2 Fuzzy Logic Theory and Applications, pp. 29–43. Springer, Berlin (2008)
Database Ear Recognition Laboratory from the University of Science & Technology Beijing (USTB). Found on the Web page, http://www.ustb.edu.cn/resb/en/index.htm (accessed September 21, 2009)
Database of Face. Institute of Automation of Chinese Academy of Sciences (CASIA). Found on the Web page, http://biometrics.idealtest.org/dbDetailForUser.do?id=9 (accessed November 11, 2012)
Database of Human Iris. Institute of Automation of Chinese Academy of Sciences (CASIA). Found on the Web page, http://www.cbsr.ia.ac.cn/english/IrisDatabase.asp (accessed September 21, 2009)
Hidalgo, D., Castillo, O., Melin, P.: Optimization with genetic algorithms of modular neural networks using interval type-2 fuzzy logic for response integration: The case of multimodal biometry. In: International Joint Conference on Neural Networks (IJCNN), pp. 738–745 (2008)
Huang, J., Wechsler, H.: Eye Location Using Genetic Algorithm. Department of Computer Science, George Mason University, Washington, DC (1999)
Jain, A.K., Li, S.Z.: Encyclopedia of Biometrics. Springer (2009)
Jang, J., Sun, C., Mizutani, E.: Neuro-Fuzzy and Soft Computing. Prentice Hall, New Jersey (1997)
Khan, A., Bandopadhyaya, T., Sharma, S.: Classification of Stocks Using Self Organizing Map. International Journal of Soft Computing Applications 4, 19–24 (2009)
Man, K.F., Tang, K.S., Kwong, S.: Genetic Algorithms: Concepts and Designs. Springer (1999)
Melin, P., Castillo, O.: Hybrid Intelligent Systems for Pattern Recognition Using Soft Computing: An Evolutionary Approach for Neural Networks and Fuzzy Systems, 1st edn., pp. 119–122. Springer (2005)
Melin, P., Mendoza, O., Castillo, O.: Face Recognition With an Improved Interval Type-2 Fuzzy Logic Sugeno Integral and Modular Neural Networks. IEEE Transactions on Systems, Man, and Cybernetics, Part A 41(5), 1001–1012 (2011)
Melin, P., Urias, J., Solano, D., Soto, M., Lopez, M., Castillo, O.: Voice Recognition with Neural Networks, Type-2 Fuzzy Logic and Genetic Algorithms. Tijuana Institute of Technology, Tijuana México, Agosto (2006)
Moreno, B., Sanchez, A., Velez, J.: F., On the Use of Outer Ear Images for Personal Identification in Security Applications. In: IEEE 33rd Annual International Carnahan Conference on Security Technology, pp. 469–476 (1999)
Okamura, M., Kikuchi, H., Yager, R., Nakanishi, S.: Character diagnosis of fuzzy systems by genetic algorithm and fuzzy inference. In: Proceedings of the Vietnam-Japan Bilateral Symposium on Fuzzy Systems and Applications, Halong Bay, Vietnam, pp. 468–473 (1998)
Sanchez, D., Melin, P., Castillo, O.: Optimization of type-1 and type-2 fuzzy systems applied to pattern recognition. In: The 4th World Conference on Soft Computing, pp. 203–207 (2014)
Sánchez, R.: El Iris Ocular como parámetro para la Identificación Biométrica. Universidad Politécnica de Madrid, España (September 2000)
Sarhan, A.: Iris Recognition Using Discrete Cosine Transform and Artificial Neural Networks. Department of Computer Engineering, University of Jordan, Amman-11195, Jordan (2009)
Tang, K.S., Man, K.F., Kwong, S., Liu, Z.F.: Minimal Fuzzy Memberships and Rule Using Hierarchical Genetic Algorithms. IEEE Trans. Ind. Electron. 45(1), 162–169 (1998)
Vázquez, J.C., López, M., Melin, P.: Real Time Face Identification Using a Neural Network Approach. In: Melin, P., Kacprzyk, J., Pedrycz, W. (eds.) Soft Computing for Recognition Based on Biometrics. SCI, vol. 312, pp. 155–169. Springer, Heidelberg (2010)
Verma, B., Blumenstein, M.: Pattern Recognition Technologies and Applications, pp. 90–91. Information Science Reference, Hershey (2008)
Wang, C., Soh, Y.C., Wang, H., Wang, H.: A Hierarchical Genetic Algorithm for Path Planning in a Static Environment with Obstacles. In: Canadian Conference on Electrical and Computer Engineering, IEEE CCECE 2002, vol. 3, pp. 1652–1657 (2002)
Wang, W., Bridges, S.: Genetic Algorithm Optimization of Membership Functions for Mining Fuzzy Association Rules. Department of Computer Science Mississippi State University (March 2, 2000)
Worapradya, K., Pratishthananda, S.: Fuzzy supervisory PI controller using hierarchical genetic algorithms. In: 5th Asian Control Conference, vol. 3, pp. 1523–1528 (2004)
Zadeh, L.A.: Fuzzy Sets. Journal of Information and Control 8, 338–353 (1965)
Zhang, Z., Zhang, C.: An Agent-Based Hybrid Intelligent System for Financial Investment Planning. In: Ishizuka, M., Sattar, A. (eds.) PRICAI 2002. LNCS (LNAI), vol. 2417, p. 355. Springer, Heidelberg (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Sánchez, D., Melin, P., Castillo, O. (2014). Hierarchical Genetic Algorithms for Fuzzy Inference System Optimization Applied to Response Integration for Pattern Recognition. In: Gelbukh, A., Espinoza, F.C., Galicia-Haro, S.N. (eds) Nature-Inspired Computation and Machine Learning. MICAI 2014. Lecture Notes in Computer Science(), vol 8857. Springer, Cham. https://doi.org/10.1007/978-3-319-13650-9_31
Download citation
DOI: https://doi.org/10.1007/978-3-319-13650-9_31
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-13649-3
Online ISBN: 978-3-319-13650-9
eBook Packages: Computer ScienceComputer Science (R0)