Skip to main content

Spatially-Constrained Probability Distribution Model of Incoherent Motion (SPIM) in Diffusion Weighted MRI Signals of Crohn’s Disease

  • Conference paper
  • First Online:
Abdominal Imaging. Computational and Clinical Applications (ABD-MICCAI 2014)

Abstract

Diffusion Weighted imaging (DWI) of the body provides important information about the physiological and microstructural properties of tissues and has great potential for imaging inflammatory activity and improve diagnosis and follow up of Crohn’s disease. The two main challenges for DWI are the lack of realistic signal decay models of heterogeneous diffusion and inherently low signal-to-noise ratio (SNR), which makes robust parameter estimation challenging. Increasing the SNR requires long scan times that are not clinically practical. In this work, to address both challenges, we propose a novel Spatially-constrained Probability distribution model of incoherent Motion (SPIM) of water molecules. This model is composed of a probability model of diffusion that we propose to account for the heterogeneity of incoherent motion within multiple compartment tissue microenvironments in each voxel and a spatial homogeneity prior proposed by Freiman et al. for robust parameter estimation. We evaluated the performance of proposed SPIM model in both simulated and in-vivo DWI data from 5 healthy and 24 Crohn’s disease subjects. SPIM model substantially reduced parameter estimation errors, with a reduction of \(35\,\%\) for perfusion and \(7\,\%\) for perfusion fraction and \(4\,\%\) for diffusion parameters. Coefficient of variation of estimated parameters decreased using SPIM compared to simple bi-exponential signal decay model, which indicates an increase in robustness. Parameters estimated using SPIM model better discriminated enhancing and non-enhancing stages of Crohn’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kirk, G., Clements, W.: Crohn’s disease and colorectal malignancy. Int. J. Clin. Pract. 53, 314–315 (1999)

    Google Scholar 

  2. Chavhan, G.B., AlSabban, Z., Babyn, P.S.: Diffusion-weighted imaging in pediatric body MR imaging: principles, technique, and emerging applications. RadioGraphics 34, E73–E88 (2014)

    Article  Google Scholar 

  3. Stejskal, E., Tanner, J.: Spin diffusion measurements: spin-echo in the presence of a time dependent field gradient. J. Chem. Phys. 42, 288–292 (1965)

    Article  Google Scholar 

  4. Koh, D.M., Collins, D.J., Orton, M.R.: Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. AJR Am. J. Roentgenol. 196, 1351–1361 (2011)

    Article  Google Scholar 

  5. Bihan, D.L., Breton, E., Lallemand, D., Aubin, M.L., Vignaud, J., Laval-Jeantet, M.: Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168, 497–505 (1988)

    Article  Google Scholar 

  6. Thornton, M., Solomon, M.J.: Crohn’s disease: in defense of a microvascular aetiology. Int. J. Colorectal Dis. 17, 287–297 (2002)

    Article  Google Scholar 

  7. Freiman, M., Perez-Rossello, J.M., Callahan, M.J., Bittman, M., et al.: Characterization of fast and slow diffusion from diffusion-weighted MRI of pediatric Crohn’s disease. J. Magn. Reson. Imaging 37, 156–163 (2013). http://dx.doi.org/10.1002/jmri.23781

    Article  Google Scholar 

  8. Freiman, M., Perez-Rossello, J.M., Callahan, M.J., Voss, S.D., et al.: Reliable estimation of incoherent motion parametric maps from diffusion-weighted MRI using fusion bootstrap moves. Med. Image Anal. 17, 325–336 (2013). http://dx.doi.org/10.1016/j.media.2012.12.001

    Article  Google Scholar 

  9. Freiman, M., Afacan, O., Mulkern, R.V., Warfield, S.K.: Improved multi B-value diffusion-weighted MRI of the body by simultaneous model estimation and image reconstruction (SMEIR). In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part III. LNCS, vol. 8151, pp. 1–8. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  10. Dietrich, O., Raya, J.G., Reeder, S.B., Ingrisch, M., Reiser, M.F., Schoenberg, S.O.: Influence of multichannel combination, parallel imaging and other reconstruction techniques on MRI noise characteristics. Magn. Reson. Imaging 26, 754–762 (2008)

    Article  Google Scholar 

  11. O’Leary, D.P., Rust, B.W.: Variable projection for nonlinear least squares problems. Comput. Optim. Appl. 54, 579–593 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Davidson, R., Flachaire, E.: The wild bootstrap, tamed at last. J. Econometrics 146, 162–169 (2008)

    Article  MathSciNet  Google Scholar 

  13. Lempitsky, V., Rother, C., Roth, S., Blake, A.: Fusion moves for Markov random field optimization. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1392–1405 (2010)

    Article  Google Scholar 

  14. Conturo, T.E., McKinstry, R.C., Akbudak, E., Robinson, B.H.: Encoding of anisotropic diffusion with tetrahedral gradients: a general mathematical diffusion formalism and experimental results. Magn. Reson. Med. 35, 399–412 (1996)

    Article  Google Scholar 

  15. Mulkern, R.V., Vajapeyam, S., Robertson, R.L., Caruso, P.A., Rivkin, M.J., Maier, S.E.: Biexponential apparent diffusion coefficient parametrization in adult vs newborn brain. Magn. Reson. Imaging 19, 659–668 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Institute of Diabetes & Digestive & Kidney Diseases of the NIH under award R01DK100404 and by the Translational Research Program at Boston Children’s Hospital. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sila Kurugol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kurugol, S., Freiman, M., Afacan, O., Perez-Rossello, J.M., Callahan, M.J., Warfield, S.K. (2014). Spatially-Constrained Probability Distribution Model of Incoherent Motion (SPIM) in Diffusion Weighted MRI Signals of Crohn’s Disease . In: Yoshida, H., Näppi, J., Saini, S. (eds) Abdominal Imaging. Computational and Clinical Applications. ABD-MICCAI 2014. Lecture Notes in Computer Science(), vol 8676. Springer, Cham. https://doi.org/10.1007/978-3-319-13692-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13692-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13691-2

  • Online ISBN: 978-3-319-13692-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics