Abstract
Recent efforts in the Semantic Web community have been primarily focused on developing technical infrastructure and technologies for efficient Linked Data acquisition, publishing and interlinking. Nevertheless, due to the huge and diverse amount of information, the actual access to a piece of information in the LOD cloud still demands significant amount of effort. In this paper, we present a novel configurable method for personalised access to Linked Data. The method recommends resources of interest from users with similar tastes. To measure the similarity between the users we introduce a novel resource semantic similarity metric, which takes into account the commonalities and informativeness of the resources. We validate and evaluate the method on a real-world dataset from the Web services domain. The results show that our method outperforms the other baseline methods in terms of accuracy, serendipity and diversity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Di Noia, T., et al.: Linked open data to support content-based recommender systems. In: Proceedings of the 8th International Conference on Semantic Systems, I-SEMANTICS 2012, pp. 1–8. ACM, New York (2012)
Dojchinovski, M., Kuchar, J., Vitvar, T., Zaremba, M.: Personalised graph-based selection of web aPIs. In: Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber, G., Bernstein, A., Blomqvist, E. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 34–48. Springer, Heidelberg (2012)
Heath, T.: How will we interact with the web of data? IEEE Internet Computing 12(5), 88–91 (2008)
Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)
Marie, N., Gandon, F., Ribière, M., Rodio, F.: Discovery hub: On-the-fly linked data exploratory search. In: Proceedings of the 9th International Conference on Semantic Systems, I-SEMANTICS 2013, pp. 17–24. ACM, New York (2013)
Meymandpour, R., Davis, J.G.: Linked data informativeness. In: Ishikawa, Y., Li, J., Wang, W., Zhang, R., Zhang, W. (eds.) APWeb 2013. LNCS, vol. 7808, pp. 629–637. Springer, Heidelberg (2013)
Mirizzi, R., Di Noia, T.: From exploratory search to web search and back. In: Proceedings of the 3rd Workshop on Ph.D. Students in Information and Knowledge Management, PIKM 2010, pp. 39–46. ACM, New York (2010)
Musetti, A., et al.: Aemoo: Exploratory search based on knowledge patterns over the semantic web. Semantic Web Challenge (2012)
Ostuni, V.C., et al.: Cinemappy: a context-aware mobile app for movie recommendations boosted by dbpedia. In: de Gemmis, M., et al. (eds.) SeRSy. CEUR Workshop Proceedings, vol. 919, pp. 37–48. CEUR-WS.org (2012)
Passant, A.: dbrec — music recommendations using dBpedia. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part II. LNCS, vol. 6497, pp. 209–224. Springer, Heidelberg (2010)
Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best practices in different topical domains. In: Janowicz, K., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 245–260. Springer, Heidelberg (2014)
Sheldon, R.: A First Course in Probability. Macmillan, New York (1976)
Tapia, B., Torres, R., Astudillo, H.: Simplifying mashup component selection with a combined similarity- and social-based technique. In: Proceedings of the 5th International Workshop on Web APIs and Service Mashups, Mashups 2011, pp. 8–14. ACM, New York (2011)
Tous, R., Delgado, J.: A vector space model for semantic similarity calculation and OWL ontology alignment. In: Bressan, S., Küng, J., Wagner, R. (eds.) DEXA 2006. LNCS, vol. 4080, pp. 307–316. Springer, Heidelberg (2006)
Vitvar, T., Kopecký, J., Viskova, J., Fensel, D.: WSMO-lite annotations for web services. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 674–689. Springer, Heidelberg (2008)
Weiss, M., Gangadharan, G.R.: Modeling the mashup ecosystem: structure and growth. R&D Management 40(1), 40–49 (2010), http://dx.doi.org/10.1111/j.1467-9310.2009.00582.x , doi:10.1111/j.1467-9310.2009.00582.x
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Dojchinovski, M., Vitvar, T. (2014). Personalised Access to Linked Data. In: Janowicz, K., Schlobach, S., Lambrix, P., Hyvönen, E. (eds) Knowledge Engineering and Knowledge Management. EKAW 2014. Lecture Notes in Computer Science(), vol 8876. Springer, Cham. https://doi.org/10.1007/978-3-319-13704-9_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-13704-9_10
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-13703-2
Online ISBN: 978-3-319-13704-9
eBook Packages: Computer ScienceComputer Science (R0)