Skip to main content

Personalised Access to Linked Data

  • Conference paper
Knowledge Engineering and Knowledge Management (EKAW 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8876))

Abstract

Recent efforts in the Semantic Web community have been primarily focused on developing technical infrastructure and technologies for efficient Linked Data acquisition, publishing and interlinking. Nevertheless, due to the huge and diverse amount of information, the actual access to a piece of information in the LOD cloud still demands significant amount of effort. In this paper, we present a novel configurable method for personalised access to Linked Data. The method recommends resources of interest from users with similar tastes. To measure the similarity between the users we introduce a novel resource semantic similarity metric, which takes into account the commonalities and informativeness of the resources. We validate and evaluate the method on a real-world dataset from the Web services domain. The results show that our method outperforms the other baseline methods in terms of accuracy, serendipity and diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Di Noia, T., et al.: Linked open data to support content-based recommender systems. In: Proceedings of the 8th International Conference on Semantic Systems, I-SEMANTICS 2012, pp. 1–8. ACM, New York (2012)

    Google Scholar 

  2. Dojchinovski, M., Kuchar, J., Vitvar, T., Zaremba, M.: Personalised graph-based selection of web aPIs. In: Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber, G., Bernstein, A., Blomqvist, E. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 34–48. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Heath, T.: How will we interact with the web of data? IEEE Internet Computing 12(5), 88–91 (2008)

    Article  Google Scholar 

  4. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)

    Article  Google Scholar 

  5. Marie, N., Gandon, F., Ribière, M., Rodio, F.: Discovery hub: On-the-fly linked data exploratory search. In: Proceedings of the 9th International Conference on Semantic Systems, I-SEMANTICS 2013, pp. 17–24. ACM, New York (2013)

    Google Scholar 

  6. Meymandpour, R., Davis, J.G.: Linked data informativeness. In: Ishikawa, Y., Li, J., Wang, W., Zhang, R., Zhang, W. (eds.) APWeb 2013. LNCS, vol. 7808, pp. 629–637. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Mirizzi, R., Di Noia, T.: From exploratory search to web search and back. In: Proceedings of the 3rd Workshop on Ph.D. Students in Information and Knowledge Management, PIKM 2010, pp. 39–46. ACM, New York (2010)

    Google Scholar 

  8. Musetti, A., et al.: Aemoo: Exploratory search based on knowledge patterns over the semantic web. Semantic Web Challenge (2012)

    Google Scholar 

  9. Ostuni, V.C., et al.: Cinemappy: a context-aware mobile app for movie recommendations boosted by dbpedia. In: de Gemmis, M., et al. (eds.) SeRSy. CEUR Workshop Proceedings, vol. 919, pp. 37–48. CEUR-WS.org (2012)

    Google Scholar 

  10. Passant, A.: dbrec — music recommendations using dBpedia. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part II. LNCS, vol. 6497, pp. 209–224. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best practices in different topical domains. In: Janowicz, K., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 245–260. Springer, Heidelberg (2014)

    Google Scholar 

  12. Sheldon, R.: A First Course in Probability. Macmillan, New York (1976)

    MATH  Google Scholar 

  13. Tapia, B., Torres, R., Astudillo, H.: Simplifying mashup component selection with a combined similarity- and social-based technique. In: Proceedings of the 5th International Workshop on Web APIs and Service Mashups, Mashups 2011, pp. 8–14. ACM, New York (2011)

    Google Scholar 

  14. Tous, R., Delgado, J.: A vector space model for semantic similarity calculation and OWL ontology alignment. In: Bressan, S., Küng, J., Wagner, R. (eds.) DEXA 2006. LNCS, vol. 4080, pp. 307–316. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Vitvar, T., Kopecký, J., Viskova, J., Fensel, D.: WSMO-lite annotations for web services. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 674–689. Springer, Heidelberg (2008)

    Google Scholar 

  16. Weiss, M., Gangadharan, G.R.: Modeling the mashup ecosystem: structure and growth. R&D Management 40(1), 40–49 (2010), http://dx.doi.org/10.1111/j.1467-9310.2009.00582.x , doi:10.1111/j.1467-9310.2009.00582.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Dojchinovski, M., Vitvar, T. (2014). Personalised Access to Linked Data. In: Janowicz, K., Schlobach, S., Lambrix, P., Hyvönen, E. (eds) Knowledge Engineering and Knowledge Management. EKAW 2014. Lecture Notes in Computer Science(), vol 8876. Springer, Cham. https://doi.org/10.1007/978-3-319-13704-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13704-9_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13703-2

  • Online ISBN: 978-3-319-13704-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics