Abstract
We present a general-purpose method for inducing OWL class descriptions over data and knowledge captured with RDF and OWL in a closed-world way. We combine our approach with a top-down refinement-based search with Description Logic (DL) expressions which incorporates OWL background knowledge. Our methods are designed for speed and scalability to support analysis tasks like data mining over large knowledge-rich data sets. We compare our methods to a state-of-the-art DL learning tool with respect to a large benchmark problem to demonstrate the speed and effectiveness of our approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Newman, J., Bolton, E.E., Müller-Dieckmann, J., Fazio, V.J., Gallagher, D.T., Lovell, D., Luft, J.R., Peat, T.S., Ratcliffe, D., Sayle, R.A., Snell, E.H., Taylor, K., Vallotton, P., Velanker, S., von Delft, F.: On the need for an international effort to capture, share and use crystallization screening data. Acta Crystallographica Section F Structural Biology and Crystallization Communications 68(3), 253–258 (2012)
Klein, J., Jupp, S., Moulos, P., Fernandez, M., Buffin-Meyer, B., Casemayou, A., Chaaya, R., Charonis, A., Bascands, J.L., Stevens, R., Schanstra, J.P.: The KUPKB: a novel web application to access multiomics data on kidney disease. FASEB Journal: official publication of the Federation of American Societies for Experimental Biology 26(5), 2145–2153 (2012) PMID: 22345404
Lehmann, J.: DL-learner: Learning concepts in description logics. Journal of Machine Learning Research 10, 2639–2642 (2009)
Iannone, L., Palmisano, I., Fanizzi, N.: An algorithm based on counterfactuals for concept learning in the semantic web. Applied Intelligence 26(2), 139–159 (2007)
Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL concept learning in description logics. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 107–121. Springer, Heidelberg (2008)
Ławrynowicz, A., Potoniec, J.: Fr-ONT: An algorithm for frequent concept mining with formal ontologies. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds.) ISMIS 2011. LNCS, vol. 6804, pp. 428–437. Springer, Heidelberg (2011)
Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The description logic handbook: theory, implementation, and applications. Cambridge University Press, New York (2003)
Tao, J., Sirin, E., Bao, J., McGuinness, D.L.: Integrity constraints in owl. In: AAAI2010: Proceedings of the AAAI Conference on Artificial Intelligence (2010)
Kazakov, Y.: RIQ and SROIQ are harder than SHOIQ. In: Proc. KR 2008 (2008)
Lehmann, J., Auer, S., Bühmann, L., Tramp, S.: Class expression learning for ontology engineering. Semantics: Science, Services and Agents on the World Wide Web 9(1), 71–81 (2011)
Lehmann, J., Hitzler, P.: Concept learning in description logics using refinement operators. Machine Learning 78, 203–250 (2010)
Tao, J.: Integrity Constraints for the Semantic Web: An OWL2-DL Extension. PhD thesis, Rensselaer Polytechnic Institute, Troy, NY, USA, AAI3530046 (2012)
Horridge, M., Bechhofer, S.: The OWL API: a java API for OWL ontologies. Semantic Web 2(1), 11–21 (2011)
Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL reasoner. Web Semantics: Science, Services and Agents on the World Wide Web 5(2), 51–53 (2007)
Ratcliffe, D., Taylor, K., Newman, J.: Ontology-based machine learning for protein crystallisation. In: Australasian Ontology Workshop (AOW 2011), Perth, Australia, vol. 132, CRPIT (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Ratcliffe, D., Taylor, K. (2014). Closed-World Concept Induction for Learning in OWL Knowledge Bases. In: Janowicz, K., Schlobach, S., Lambrix, P., Hyvönen, E. (eds) Knowledge Engineering and Knowledge Management. EKAW 2014. Lecture Notes in Computer Science(), vol 8876. Springer, Cham. https://doi.org/10.1007/978-3-319-13704-9_33
Download citation
DOI: https://doi.org/10.1007/978-3-319-13704-9_33
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-13703-2
Online ISBN: 978-3-319-13704-9
eBook Packages: Computer ScienceComputer Science (R0)