Abstract
Automatic analysis of human facial expression is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we developed a new method for automatic facial expression recognition based on verifying movable facial elements and tracking nodes in sequential frames. The algorithm plots a face model graph in each frame and extracts features by measuring the ratio of the facial graph sides. Seven facial expressions, including neutral pose are being classified in this study using support vector machine and other classifiers on JAFFE databases. The approach does not rely on action units, and therefore eliminates errors which are otherwise propagated to the final result due to incorrect initial identification of action units. Experimental results show that analyzing facial movements gives accurate and efficient information in order to identify different facial expressions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ekman, P., Rolls, E.T., Perrett, D.I., Ellis, H.D.: Facial expressions of emotions: an old controversy and new finding discussion. Pill Trans. Royal Soc. London Ser. B, Biol. Sci. 335(1273), 63–69 (1992)
Mehrabian, A.: Nonverbal communication. Aldin, London (2007)
Golomb, B., Sejnowski, T.: Benefits of machine understanding of facial expression. In: NSF Report- Facial Expression Understanding, Salt Lack City, UT, pp. 55–71 (1997)
Pantic, M.: Face for ambient interface. In: Cai, Y., Abascal, J. (eds.) Ambient Intelligence in Everyday Life. LNCS (LNAI), vol. 3864, pp. 32–66. Springer, Heidelberg (2006)
Young, A.: Face and Mind. Oxford Univ. Press, Oxford (1998)
Wan, S., Aggarwal, J.K.: Spontaneous facial expression recognition: A robust metric learning approach. J. Pattern Recognition 47, 1859–1868 (2014)
Taner Eskil, M., Benli, K.S.: Facial expression recognition based on anatomy. J. Computer Vision and Image Understanding 119, 1–14 (2014)
Li, Y., Wang, S., Zhao, Y., Ji, Q.: Simultaneous Facial Feature Tracking and Facial Expression Recognition. IEEE Transactions on Image Processing 22(7) (2013)
Valstar, M.F., Pantic, M.: Fully Automatic Recognition of the Temporal Phases of Facial Actions. IEEE Transactions on Systems, Man, and Cybernetics 42(1) (2012)
Fasel, B., Luettin, J.: Automatic facial expression analyses: a survey. Pattern Recognition 36, 259–275 (2003)
Bartlett, M.S., Littlewort, G., Frank, M.G., Lainscsek, C., Fasel, I., Movellan, J.R.: Recognizing facial expression: machine learning and application to spontaneous behavior. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., vol. 2, pp. 568–573 (2005)
Bartlett, M.S., Littlewort, G.C., Frank, M.G., Lainscsek, C., Fasel, I.R., Movellan, J.R.: Automatic Recognition of Facial Actions in Spontaneous Expressions. J. Multimedia 1(6), 22–35 (2006)
Gu, W., Xiang, C., Venkatesh, Y.V., Huang, D., Lin, H.: Facial expression recognition using radial encoding of local Gabor features and classifier synthesis. Pattern Recognition 45, 80–91 (2012)
Zhao, G., Pietikäinen, M.: Boosted multi-resolutions patiotemporal descriptors for facial expression recognition. Pattern Recognition Letters 30(12), 1117–1127 (2009)
Shan, C., Gong, S., McOwan, P.W.: Robust facial expression recognition using local binary patterns. In: Proceedings of the IEEE International Conference on Image Procession, pp. 370–373 (2005)
Khan, R.A., Meyer, A., Konik, H., Bouakaz, S.: Framework for reliable, real-time facial expression recognition, for low resolution images. Pattern Recognition Letters 34, 1159–1168 (2013)
Ojansivu, V., Heikkilä, J.: Blur insensitive texture classification using local phase quantization. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2008. LNCS, vol. 5099, pp. 236–243. Springer, Heidelberg (2008)
Yang, P., Liu, Q., Metaxas, D.N.: Exploring facial expressions with compositional features. In: IEEE Conference on Computer Vision and Pattern Recognition (2010)
Pantic, M., Rothkrantz, L.J.: Facial action recognition for facial expression analysis from static face images. Trans. Syst. Man Cyber. Part B 34(3), 1449–1461 (2004)
Lucey, S., Matthews, I., Hu, Ch., Ambadar, Z.: AAM derived face representations for robust facial action recognition. In: Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition (2006)
Zhang, Y., Ji, Q.: Active and dynamic information fusion for facial expression understanding from image sequences. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 699–714 (2005)
Fang, H., Parthaláin, N.M., Aubrey, A.J., Tama, G.K.L., Borgo, R., Rosin, P.L., Grant, P.W., Marshall, D., Chen, M.: Facial expression recognition in dynamic sequences: An integrated approach. Pattern Recognition 47, 1271–1281 (2014)
Viola, P., Jones, M.: Robust real-time object detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)
JAFFE Face Database. http://www.kasrl.org/jaffe.html
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Mohseni, S., Zarei, N., Miandji, E., Ardeshir, G. (2015). Facial Expression Recognition Using Facial Graph. In: Ji, Q., B. Moeslund, T., Hua, G., Nasrollahi, K. (eds) Face and Facial Expression Recognition from Real World Videos. FFER 2014. Lecture Notes in Computer Science(), vol 8912. Springer, Cham. https://doi.org/10.1007/978-3-319-13737-7_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-13737-7_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-13736-0
Online ISBN: 978-3-319-13737-7
eBook Packages: Computer ScienceComputer Science (R0)