Abstract
Face recognition from video in uncontrolled environments is an active research field that received a growing attention recently. This was mainly driven by the wide range of applications and the availability of large databases. This work presents an approach to create a robust and discriminant reference face model from video enrollment data. The work focuses on two issues, first is the key faces selection from video sequences. The second is the feature-level fusion of the key faces. The proposed fusion approaches focus on inducing subject specific feature weighting in the reference face model. Quality based sample weighting is also considered in the fusion process. The proposed approach is evaluated under different sittings on the YouTube Faces data-base and the performance gained by the proposed approach is shown in the form of EER values and ROC curves.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection (1997)
Chia, C., Sherkat, N., Nolle, L.: Towards a best linear combination for multimodal biometric fusion. In: 2010 20th International Conference on Pattern Recognition (ICPR), pp. 1176–1179 (2010)
Cui, Z., Li, W., Xu, D., Shan, S., Chen, X.: Fusing robust face region descriptors via multiple metric learning for face recognition in the wild. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3554–3561, June 2013
Dhall, A., Asthana, A., Goecke, R., Gedeon, T.: Emotion recognition using phog and lpq features. In: 2011 IEEE International Conference on Automatic Face Gesture Recognition and Workshops (FG 2011), pp. 878–883, March 2011
Ekenel, H.K., Stiefelhagen, R.: Local appearance based face recognition using discrete cosine transform. In: 13th European Signal Processing Conference, EUSIPCO 2005 (2005)
Fratric, I., Ribaric, S.: Local Binary LDA for Face Recognition. In: Vielhauer, C., Dittmann, J., Drygajlo, A., Juul, N.C., Fairhurst, M.C. (eds.) BioID 2011. LNCS, vol. 6583, pp. 144–155. Springer, Heidelberg (2011)
Guan, G., Wang, Z., Lu, S., Deng, J., Feng, D.: Keypoint-based keyframe selection. IEEE Transactions on Circuits and Systems for Video Technology 23(4), 729–734 (2013)
Gyaourova, A., Bebis, G., Pavlidis, I.: Fusion of Infrared and Visible Images for Face Recognition. In: Pajdla, T., Matas, J.G. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 456–468. Springer, Heidelberg (2004)
Hao, Y., Sun, Z., Tan, T.: Comparative Studies on Multispectral Palm Image Fusion for Biometrics. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part II. LNCS, vol. 4844, pp. 12–21. Springer, Heidelberg (2007)
Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled Faces in the Wild: A Database forStudying Face Recognition in Unconstrained Environments. In: Workshop on Faces in ’Real-Life’ Images: Detection, Alignment, and Recognition. Erik Learned-Miller and Andras Ferencz and Frédéric Jurie, Marseille, France (2008). http://hal.inria.fr/inria-00321923
Li, H., Hua, G., Lin, Z., Brandt, J., Yang, J.: Probabilistic elastic matching for pose variant face verification. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, 3499–3506 (2013)
Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)
Lu, J., Plataniotis, K.N., Venetsanopoulos, A.N.: Regularized discriminant analysis for the small sample size problem in face recognition. Pattern Recogn. Lett. 24(16), 3079–3087 (2003), http://dx.doi.org/10.1016/S0167-8655(03)00167-3
Lu, J., Plataniotis, K., Venetsanopoulos, A.: Face recognition using lda-based algorithms. IEEE Transactions on Neural Networks 14(1), 195–200 (2003)
Mendez-Vazquez, H., Martinez-Diaz, Y., Chai, Z.: Volume structured ordinal features with background similarity measure for video face recognition. In: 2013 International Conference on Biometrics (ICB), pp. 1–6, June 2013
Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recognition 29(1), 51–59 (1996). http://dx.doi.org/10.1016/0031-3203(95)00067-4
Pinto, N., DiCarlo, J., Cox, D.: How far can you get with a modern face recognition test set using only simple features? In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 2591–2598, June 2009
Prabhakar, S., Jain, A.K.: Decision-level Fusion in Fingerprint Verification. In: Kittler, J., Roli, F. (eds.) MCS 2001. LNCS, vol. 2096, pp. 88–98. Springer, Heidelberg (2001)
Raghavendra, R., Dorizzi, B., Rao, A., Kumar, G.H.: Designing efficient fusion schemes for multimodal biometric systems using face and palmprint. Pattern Recognition 44(5), 1076–1088 (2011). http://www.sciencedirect.com/science/article/pii/S0031320310005352
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, pp. I-511–I-518 (2001)
Wang, Y., Tan, T., Jain, A.: Combining face and iris biometrics for identity verification. In: Kittler, J., Nixon, M. (eds.) Audio- and Video-Based Biometric Person Authentication. Lecture Notes in Computer Science, vol. 2688, pp. 805–813. Springer, Berlin Heidelberg (2003)
Wolf, L., Hassner, T., Maoz, I.: Face recognition in unconstrained videos with matched background similarity. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 529–534, June 2011
Wolf, Lior, Hassner, Tal, Taigman, Yaniv: Similarity Scores Based on Background Samples. In: Zha, Hongbin, Taniguchi, Rin-ichiro, Maybank, Stephen (eds.) ACCV 2009, Part II. LNCS, vol. 5995, pp. 88–97. Springer, Heidelberg (2010)
Wolf, L., Levy, N.: The svm-minus similarity score for video face recognition. In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2013, pp. 3523–3530. IEEE Computer Society, Washington, DC (2013). http://dx.doi.org/10.1109/CVPR.2013.452
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Damer, N., Samartzidis, T., Nouak, A. (2015). Personalized Face Reference from Video: Key-Face Selection and Feature-Level Fusion. In: Ji, Q., B. Moeslund, T., Hua, G., Nasrollahi, K. (eds) Face and Facial Expression Recognition from Real World Videos. FFER 2014. Lecture Notes in Computer Science(), vol 8912. Springer, Cham. https://doi.org/10.1007/978-3-319-13737-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-13737-7_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-13736-0
Online ISBN: 978-3-319-13737-7
eBook Packages: Computer ScienceComputer Science (R0)