Skip to main content

A Light-Weight Robot Simulator for Modular Robotics

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8906))

Abstract

Physical simulation are frequently used in robotics for evaluation of control strategies or planning techniques. In this paper, a novel, light-weight open-source robotic simulator is introduced. It provides both physical and sensor simulation and it was designed to be run in a headless mode, i.e., without any visualization, which makes it suitable for computational grids. Despite this fact, the progress of the simulation can be later visualized using external tools like Blender 3D. This brings advantage in comparison to more general and powerful simulators that cannot be easily run on such machines. The paper briefly introduces architecture of the simulator with description of its utilization in evolutionary modular robotics.

The work in this paper was supported by TACR grant No. TE01020197, Access to computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum, provided under the programme “Projects of Large Infrastructure for Research, Development, and Innovations” (LM2010005), is greatly appreciated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bullet physics engine, http://bulletphysics.org/

  2. Delta3d, http://www.delta3d.org

  3. Epic games, http://www.epicgames.com

  4. Open dynamics engine, http://www.ode.org/

  5. Open scene graph, http://www.openscenegraph.org/projects/osg

  6. Swarm-bots: Swarms of self-assembling artifacts, http://www.swarm-bots.org/

  7. V-rep, virtual robot experimentation platform, http://www.coppeliarobotics.com/

  8. Vortex physical engine, http://www.vxsim.com/en/simulators

  9. Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (November/December 1995)

    Google Scholar 

  10. Awaad, I., León, B.: XPERSim: A simulator for robot learning by experimentation. In: Carpin, S., Noda, I., Pagello, E., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2008. LNCS (LNAI), vol. 5325, pp. 5–16. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: Usarsim: a robot simulator for research and education. In: 2007 IEEE International Conference on Robotics and Automation, pp. 1400–1405 (April 2007)

    Google Scholar 

  12. CESNET. Metacentrum grid infrastructure, http://www.metacentrum.cz/

  13. Fišer, D., Vonásek, V.: Simulator sim, http://imr.felk.cvut.cz/Research/Simulator

  14. Gerkey, B.P., Vaughan, R.T., Howard, A.: The player/stage project: Tools for multi-robot and distributed sensor systems. In: Proceedings of the 11th International Conference on Advanced Robotics, pp. 317–323 (2003)

    Google Scholar 

  15. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: A review. Neural Networks 21(4), 642–653 (2008)

    Article  Google Scholar 

  16. Ijspeert, A.J., Crespi, A., Ryczko, D., Cabelguen, J.-M.: From swimming to walking with a salamander robot driven by a spinal cord model. Science 315(5817), 1416–1420 (2007)

    Article  Google Scholar 

  17. Ijspeert, A.J., Hallam, J., Willshaw, D.: Evolving swimming controllers for a simulated lamprey with inspiration from neurobiology. Adaptive Behavior 7(2), 151–172 (1999)

    Article  Google Scholar 

  18. Cerny, J., Kubalik, J.: Co-evolutionary approach to design of robotic gait. In: Proceedings of the EvoStar 2013 (2013)

    Google Scholar 

  19. Kanehiro, F., Hirukawa, H., Kajita, S.: Openhrp: Open architecture humanoid robotics platform. I. J. Robotic Res. 23(2), 155–165 (2004)

    Article  Google Scholar 

  20. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), September 30-October 2, vol. 3, pp. 2149–2154 (2004)

    Google Scholar 

  21. Kulich, M., Chudoba, J., Kosnar, K., Krajnik, T., Faigl, J., Preucil, L.: Syrotek — distance teaching of mobile robotics. IEEE Transactions on Education 56(1), 18–23 (February)

    Google Scholar 

  22. Levi, P., Kernbach, S. (eds.): Symbiotic Multi-Robot Organisms: Reliability, Adaptability, Evolution. Springer (2010)

    Google Scholar 

  23. The MachineLab. Mmp-5 mobile robot platform, http://www.themachinelab.com/MMP-5.html

  24. Marbach, D., Ijspeert, A.J.: Online optimization of modular robot locomotion. In: Proceedings of the IEEE International Conference on Mechatronics and Automation (ICMA 2005), pp. 248–253 (2005)

    Google Scholar 

  25. Michel, O.: Webots: Professional mobile robot simulation. Journal of Advanced Robotics Systems 1(1), 39–42 (2004)

    Google Scholar 

  26. Moubarak, P., Ben-Tzvi, P.: Modular and reconfigurable mobile robotics. Robotics and Autonomous Systems 60(12), 1648–1663 (2012)

    Article  Google Scholar 

  27. Mulder, T., Van De Crommert Hw Duysens, J.: Neural control of locomotion: sensory control of the central pattern generator and its relation to treadmill training. Gait & Posture 7(3), 251–263 (1998)

    Google Scholar 

  28. Taga, G., Yamaguchi, Y., Shimizu, H.: Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Biological Cybernetics 65(3), 147–159 (1991)

    Article  MATH  Google Scholar 

  29. Vonásek, V., Kulich, M., Krajník, T., Saska, M., Fišer, D., Petřík, V., Přeučil, L.: Techniques for Modeling Simulation Environments for Modular Robotics. In: Proccedings of International Conference on Mathematical Modelling, pp. 1–6. Vienna University of Technology, Vienna (2012)

    Google Scholar 

  30. Webots. Commercial Mobile Robot Simulation Software, http://www.cyberbotics.com

  31. Winkler, L., Vonasek, V., Worn, H., Preucil, L.: Robot3d—a simulator for mobile modular self-reconfigurable robots. In: 2012 IEEE Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 464–469 (September 2012)

    Google Scholar 

  32. Zaratti, M., Fratarcangeli, M., Iocchi, L.: A 3D Simulator of Multiple Legged Robots Based on USARSim. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006: Robot Soccer World Cup X. LNCS (LNAI), vol. 4434, pp. 13–24. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  33. Zykov, V., Chan, A., Lipson, H.: Molecubes: An open-source modular robotics kit

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Vonásek, V., Fišer, D., Košnar, K., Přeučil, L. (2014). A Light-Weight Robot Simulator for Modular Robotics. In: Hodicky, J. (eds) Modelling and Simulation for Autonomous Systems. MESAS 2014. Lecture Notes in Computer Science, vol 8906. Springer, Cham. https://doi.org/10.1007/978-3-319-13823-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13823-7_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13822-0

  • Online ISBN: 978-3-319-13823-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics