Skip to main content

Automatic Lung Tumor Segmentation with Leaks Removal in Follow-up CT Studies

  • Conference paper
  • First Online:
Clinical Image-Based Procedures. Translational Research in Medical Imaging (CLIP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8680))

Included in the following conference series:

  • 587 Accesses

Abstract

We present a novel automatic algorithm for lung tumors segmentation in follow-up CT studies. The inputs are a baseline CT scan and a delineation of the tumors in it; the output is the tumor delineations in the follow-up scan. The algorithm consists of four steps: (1) deformable registration of the baseline and follow-up scans; (2) segmentation of the tumors in the follow-up scan; (3) geometry-based segmentation leaks correction; and (4) tumor boundary regularization. The key advantage of our method is that it automatically builds a patient-specific prior that increases segmentation accuracy and robustness and reduces observer variability. Our experimental results on 80 pairs of CT scans from 40 patients with ground-truth segmentations by a radiologist yield an average overlap error of 14.5 % (std = 5.6), a significant improvement from the 30 % (std = 13.3) result of stand-alone fast marching segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tuma, S.R.: Sometimes size does not matter: reevaluating RECIST and tumor response rate endpoints. J. Nat. Cancer Inst. 98, 1272–1274 (2006)

    Article  Google Scholar 

  2. Weizman, L., Ben-Sira, L., Joskowicz, L., Precel, R., Constantini, S., Ben-Bashat, D.: Automatic segmentation and components classification of optic pathway gliomas in MRI. In: Jiang, T., Navab, N., Pluim, J.P., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 103–110. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Hollensen, C., Cannon, G., Cannon, D., Bentzen, S., Larsen, R.: Lung tumor segmentation using electric flow lines for graph cuts. In: Campilho, A., Kamel, M. (eds.) ICIAR 2012, Part II. LNCS, vol. 7325, pp. 206–213. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Reeves, A., Jirapatnakul, A.C.: The VOLCANO’09 MICCAI Challenge: Preliminary results. In: VOLCANO’09, pp. 353–364 (2009)

    Google Scholar 

  5. Kostis, W.J., et al.: Three-dimensional segmentation and growth-rate estimation of small pulmonary nodules in helical CT images. Trans. Med. Imag. 22(10), 1259–1274 (2003)

    Article  Google Scholar 

  6. Jirapatnakul, A.C., et al.: Segmentation of juxtapleural pulmonary nodules using a robust surface estimate. Int. J. Biomed. Imag. 1–14 (2011)

    Google Scholar 

  7. Gribben, H., et al.: MAP-MRF segmentation of lung tumours in PET/CT images. IEEE Int. Symp. Biomed. Imag. 290–293 (2009)

    Google Scholar 

  8. Kanakatte, A., et al.: A pilot study of automatic lung tumor segmentation from Positron Emission Tomography images using standard uptake values. Comp. Intel. Imag. Sig. Proc. 363–368 (2007)

    Google Scholar 

  9. Plajer, I.C., Richter, D.: A new approach to model based active contours in lung tumor segmentation in 3D CT image data. Inf. Tec. App Biomed. 1–4 (2010)

    Google Scholar 

  10. Awad, J., et al.: Three-dimensional lung tumor segmentation from x-ray computed tomography using sparse field active models. Med. Phys. 39(2), 851–865 (2012)

    Article  Google Scholar 

  11. Murphy, K., et al.: Evaluation of registration methods on thoracic CT: The EMPIRE10 Challenge Trans. Med. Imag. 30(11), 1901–1920 (2011)

    Article  Google Scholar 

  12. Song, G., Tustison, N.: Lung CT image registration using diffeomorphic transformation models. Med. Image Anal. Clinic 23–32 (2010)

    Google Scholar 

  13. Kronman, A., Joskowicz, L., Sosna, J.: Anatomical structures segmentation by spherical 3D ray casting and gradient domain editing. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part II. LNCS, vol. 7511, pp. 363–370. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Bærentzen, J.A.: On the implementation of fast marching methods for 3D lattices. Math. Model 13, 1–19 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Refael Vivanti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Vivanti, R., Karaaslan, O.A., Joskowicz, L., Sosna, J. (2014). Automatic Lung Tumor Segmentation with Leaks Removal in Follow-up CT Studies. In: Linguraru, M., et al. Clinical Image-Based Procedures. Translational Research in Medical Imaging. CLIP 2014. Lecture Notes in Computer Science(), vol 8680. Springer, Cham. https://doi.org/10.1007/978-3-319-13909-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13909-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13908-1

  • Online ISBN: 978-3-319-13909-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics