Skip to main content

A Contour Detection Approach for Mobile Robot

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8918))

Included in the following conference series:

  • 3505 Accesses

Abstract

Safe moving is a basic ability for a mobile robot, and it is beneficial for the robot to avoid the collisions with the environment if it knows the boundaries between the obstacles and free space. In this paper, a contour detection approach is presented. The input image is firstly processed by a Gaussian filter and Sobel edge detector. After it is processed by connectivity-based boundaries extraction, the result is finalized, aided by Canny edge map. The experiments demonstrate the effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Grigorescu, C., Petkov, N., Westenberg, M.A.: Contour Detection Based on Nonclassical Receptive Field Inhibition. IEEE Transactions on Image Processing 12(7), 729–739 (2003)

    Article  Google Scholar 

  2. Bergholm, F.: Edge focusing. IEEE Transactions on Pattern Analysis and Machine Intelligence  PAMI-9, 726–741 (1987)

    Google Scholar 

  3. Sarkar, S., Bowyer, K.L.: Optimal infinite impulse response zero-crossing based edge detection. Computer Vision, Graphics and Image Process 54, 224–243 (1991)

    MATH  Google Scholar 

  4. Rothwell, C.A., Mundy, J.L., Hoffman, W., Nguyen, V.D.: Driving vision by topology. In: International Symposium on Computer Vision, pp. 395–400 (1995)

    Google Scholar 

  5. Iverson, L., Zucker, S.W.: Logical/linear operators for image curves. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(10), 982–996 (1995)

    Article  Google Scholar 

  6. Smith, S.M., Brady, J.M.: SUSAN–A new approach to low level image processing. International Journal of Computer Vision 23(1), 45–78 (1997)

    Article  Google Scholar 

  7. Tabb, M., Ahuja, N.: Multiscale image segmentation by integrated edge and region detection. IEEE Transactions on Image Processing 6, 642–655 (1997)

    Article  Google Scholar 

  8. Bezdek, J.C., Chandrasekhar, R., Attikiouzel, Y.: A geometric approach to edge detection. IEEE Transaction on Fuzzy Systems 6(1), 52–75 (1998)

    Article  Google Scholar 

  9. Black, M.J., Sapiro, G., Marimont, D., Heeger, D.: Robust anisotropic diffusion. IEEE Transaction on Image Processing 7, 421–432 (1998)

    Article  Google Scholar 

  10. Meer, P., Georgescu, B.: Edge detection with embedded confidence. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 1351–1365 (2001)

    Article  Google Scholar 

  11. Liu, X., Cao, Z., Jiao, J., et al.: A general robot environment understanding approach inspired by biological visual cortex. Robotics and Biomimetics, 1953–1957 (December 2013)

    Google Scholar 

  12. De Souza, G.N., Kak, A.C.: Vision for mobile robot navigation: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(2), 237–267 (2002)

    Article  Google Scholar 

  13. Arbeláez, P., Fowlkes, C.: Contour Detection and Hierarchical Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(5), 237–267 (2011)

    Article  Google Scholar 

  14. Canny, J.F.: A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-8(6), 679–698 (1986)

    Google Scholar 

  15. Roberts, L.G.: Machine Perception of Three-Dimensional Solids. In: Tippett, J.T., et al. (eds.) Optical and Electro-Optical Information Processing. MIT Press (1965)

    Google Scholar 

  16. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley (1973)

    Google Scholar 

  17. Prewitt, J.M.S.: Object Enhancement and Extraction. In: Lipkin, B., Rosenfeld, A. (eds.) Picture Processing and Psychopictorics. Academic Press (1970)

    Google Scholar 

  18. Marr, D.C., Hildreth, E.: Theory of Edge Detection. In: Proc. Royal Soc. of London (1980)

    Google Scholar 

  19. Stefano, L.D.: A simple and efficient connected components labeling algorithm. In: Image Analysis and Processing, pp. 322–327 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ai, K., Cao, Z., Liu, X., Zhou, C., Yang, Y. (2014). A Contour Detection Approach for Mobile Robot. In: Zhang, X., Liu, H., Chen, Z., Wang, N. (eds) Intelligent Robotics and Applications. ICIRA 2014. Lecture Notes in Computer Science(), vol 8918. Springer, Cham. https://doi.org/10.1007/978-3-319-13963-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13963-0_27

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13962-3

  • Online ISBN: 978-3-319-13963-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics