Skip to main content

Simulation of Mobile Robot Navigation Using the Distributed Control Command Based Fuzzy Inference

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8917))

Included in the following conference series:

Abstract

This paper propose simulation results of navigation for a mobile robot with an active camera, which is intelligently searching the goal location in unknown dynamic environments using sensor fusion, data that is usually required in real-time mobile robotics or simulation. Instead of using "physical sensor fusion" method which generates the trajectory of a robot based upon the environment model and sensory data. In this paper, "command fusion" method is used to govern the robot motions. The navigation strategy is based on the combination of fuzzy rules tuned for both goal-approach and obstacle-avoidance. To identify the environments, a distributed control command technique is introduced, where the sensory data of ultrasonic sensors and a vision sensor are fused into the identification process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Er, M., Tan, T.P., Loh, S.Y.: Control of a mobile robot using generalized dynamic fuzzy neural networks. Microprocessors and Microsystems 28, 491–498 (2004)

    Article  Google Scholar 

  2. Zadeh, L.A.: Outline of a New Approach to the Analysis of Complex Systems and Decision Processes. IEEE Transactions on Systems, Man, and Cybernetics 3(1), 28–44 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  3. Nair, D., Aggarwal, J.K.: Moving Obstacle Detection from a Navigation Robot. IEEE Trans. on robotics and automation 14(3), 404–416 (1998)

    Article  Google Scholar 

  4. Bentalba, S., El Hajjaji, A., Tachid, A.: Fuzzy Control of a Mobile Robot: a New Approach. In: IEEE International Conference on Control Applications, pp. 69–72 (1997)

    Google Scholar 

  5. Furuhashi, T., Nakaoka, K., Morikawa, K., Maeda, H., Uchikawa, Y.: A study on knowledge finding using fuzzy classifier system. Journal of Japan Society for Fuzzy Theory and Systems, vol 7(4), 839–848 (1995)

    Google Scholar 

  6. Itani, H., Furuhashi, T.: A study on teaching information understanding by autonomous mobile robot. Trans. of SICE 38(11), 966–973 (2002)

    Google Scholar 

  7. Beom, H.R., Cho, H.S.: A sensor-Based Navigation for a Mobile Robot Using Fuzzy Logic and Reinforcement Learning. IEEE Trans. on system, man, and cybernetics 25(3), 464–477 (1995)

    Article  Google Scholar 

  8. Ohya, A., Kosaka, A., Kak, A.: Vision-Based Navigation by a Mobile Robot with Obstacle Avoidance Using Single-Camera Vision and Ultrasonic Sensing. IEEE Transactions on Robotics and Automation 14(6), 969–978 (1998)

    Article  Google Scholar 

  9. Tunstel, E.: Fuzzy-behavior synthesis, coordination, and evolution in an adaptive behavior hierarchy. In: Saffiotti, A., Driankov, D. (eds.) Fuzzy Logic Techniques for Autonomous 470 TUNSTEL, de OLIVEIRA, AND BERMAN Vehicle Navigation. STUDFUZZ, vol. 61, pp. 205–234. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Tunstel, E.: Fuzzy behavior modulation with threshold activation for autonomous vehicle navigation. In: 18th International Conference of the North American Fuzzy Information Processing Society, pp. 776–780 (1999)

    Google Scholar 

  11. Er, M., Tan, T.P., Loh, S.Y.: Control of a mobile robot using generalized dynamic fuzzy neural networks. Microprocessors and Microsystems 28, 491–498 (2004)

    Article  Google Scholar 

  12. Jouffe, L.: Fuzzy inference system learning by reinforcement method. IEEE Trans. Syst., Man, Cybern., Part C 28(3), 338–355 (1998)

    Article  Google Scholar 

  13. Leng, G., McGinnity, T.M., Prasad, G.: An approach for on-line extraction of fuzzy rules using a self-organising fuzzy neural network. Fuzzy Sets and Systems 150, 211–243 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Nishina, T., Hagiwara, M.: Fuzzy inference neural network. Neurocomputing 14, 223–239 (1997)

    Article  Google Scholar 

  15. Takahama, T., Sakai, S., Ogura, H., Nakamura, M.: Learning fuzzy rules for bang-bang control by reinforcement learning method. Journal of Japan Society for Fuzzy Theory and Systems 8(1), 115–122 (1996)

    Google Scholar 

  16. Mehrjerdi, H., Saad, M., Ghommam, J.: Hierarchical Fuzzy Cooperative Control and Path Following for a Team of Mobile Robots. IEEE/ASME Transactions on Mechatronics 16(5), 907–917 (2011)

    Article  Google Scholar 

  17. Wang, D.S., Zhang, Y.S., Si, W.J.: Behavior-based hierarchical fuzzy control for mobile robot navigation in dynamic environment. In: 2011 Chinese Control and Decision Conference(CCDC), pp. 2419–2424 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kim, M., Jin, T. (2014). Simulation of Mobile Robot Navigation Using the Distributed Control Command Based Fuzzy Inference. In: Zhang, X., Liu, H., Chen, Z., Wang, N. (eds) Intelligent Robotics and Applications. ICIRA 2014. Lecture Notes in Computer Science(), vol 8917. Springer, Cham. https://doi.org/10.1007/978-3-319-13966-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13966-1_45

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13965-4

  • Online ISBN: 978-3-319-13966-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics