Skip to main content

Interactive Augmented Omnidirectional Video with Realistic Lighting

  • Conference paper
  • First Online:
Augmented and Virtual Reality (AVR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8853))

Included in the following conference series:

Abstract

This paper presents the augmentation of immersive omnidirectional video with realistically lit objects. Recent years have known a proliferation of real-time capturing and rendering methods of omnidirectional video. Together with these technologies, rendering devices such as Oculus Rift have increased the immersive experience of users. We demonstrate the use of structure from motion on omnidirectional video to reconstruct the trajectory of the camera. The position of the car is then linked to an appropriate \(360^{\circ }\) environment map. State-of-the-art augmented reality applications have often lacked realistic appearance and lighting. Our system is capable of evaluating the rendering equation in real-time, by using the captured omnidirectional video as a lighting environment. We demonstrate an application in which a computer generated vehicle can be controlled through an urban environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agusanto, K., Li, L., Chuangui, Z., Sing, N.W.: Photorealistic rendering for augmented reality using environment illumination. In: Proceedings of the Second IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 208–216 (October 2003)

    Google Scholar 

  2. Arief, I., McCallum, S., Hardeberg, J.Y.: Realtime estimation of illumination direction for augmented reality on mobile devices. In: Color and Imaging Conference, pp. 111–116. IS&T and SID, Los Angeles, CA, USA (November 2012)

    Google Scholar 

  3. Crassin, C., Neyret, F., Sainz, M., Green, S., Eisemann, E.: Interactive indirect illumination using voxel-based cone tracing: An insight. In: ACM SIGGRAPH 2011 Talks, SIGGRAPH 2011, pp. 20:1–20:1. ACM, New York (2011). http://doi.acm.org/10.1145/2037826.2037853

  4. Debevec, P.: Rendering synthetic objects into real scenes: Bridging traditional and image-based graphics with global illumination and high dynamic range photography. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1998, pp. 189–198. ACM, New York (1998)

    Google Scholar 

  5. Dumont, M., Rogmans, S., Maesen, S., Frederix, K., Taelman, J., Bekaert, P.: A spatial immersive office environment for computer-supported collaborative work - moving towards the office of the future. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, SIGMAP 2011, pp. 212–216 (2011)

    Google Scholar 

  6. Ferrari, S., Maggioni, M., Borghese, N.: Multiscale approximation with hierarchical radial basis functions networks. IEEE Transactions on Neural Networks 15(1), 178–188 (2004)

    Article  Google Scholar 

  7. Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  8. Fraundorfer, F., Scaramuzza, D.: Visual odometry : Part ii: Matching, robustness, optimization, and applications. IEEE Robotics Automation Magazine 19(2), 78–90 (2012)

    Article  Google Scholar 

  9. Gierlinger, T., Danch, D., Stork, A.: Rendering techniques for mixed reality. Journal of Real-Time Image Processing 5(2), 109–120 (2010)

    Article  Google Scholar 

  10. Gorski, K., Hivon, E., Banday, A., Wandelt, B., Hansen, F., et al.: HEALPix - A Framework for high resolution discretization, and fast analysis of data distributed on the sphere. Astrophys. J. 622, 759–771 (2005)

    Article  Google Scholar 

  11. Grosch, T.: PanoAR: Interactive augmentation of omni-directional images with consistent lighting. In: Mirage 2005, Computer Vision / Computer Graphics Collaboration Techniques and Applications, pp. 25–34 (2005)

    Google Scholar 

  12. Grosch, T., Eble, T., Mueller, S.: Consistent interactive augmentation of live camera images with correct near-field illumination. In: Proceedings of the 2007 ACM Symposium on Virtual Reality Software and Technology, VRST 2007, pp. 125–132. ACM, New York (2007)

    Google Scholar 

  13. Haller, M.: Photorealism or/and non-photorealism in augmented reality. In: Proceedings of the 2004 ACM SIGGRAPH International Conference on Virtual Reality Continuum and Its Applications in Industry, VRCAI 2004, pp. 189–196. ACM, New York (2004). http://doi.acm.org/10.1145/1044588.1044627

  14. Jones, B.R., Benko, H., Ofek, E., Wilson, A.D.: Illumiroom: Peripheral projected illusions for interactive experiences. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2013, pp. 869–878. ACM, New York (2013). http://doi.acm.org/10.1145/2470654.2466112

  15. Kajiya, J.T.: The rendering equation. In: Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1986, pp. 143–150. ACM, New York (1986)

    Google Scholar 

  16. Kanbara, M., Yokoya, N.: Real-time estimation of light source environment for photorealistic augmented reality. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 2, pp. 911–914 (August 2004)

    Google Scholar 

  17. Lam, P.M., Ho, T.Y., Leung, C.S., Wong, T.T.: All-frequency lighting with multiscale spherical radial basis functions. IEEE Trans. Vis. Comput. Graph. 16(1), 43–56 (2010). http://dblp.uni-trier.de/db/journals/tvcg/tvcg16.html

  18. Lourakis, M.I.A., Argyros, A.A.: Sba: A software package for generic sparse bundle adjustment. ACM Trans. Math. Softw. 36(1), 2:1–2:30 (2009). http://doi.acm.org/10.1145/1486525.1486527

  19. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the International Conference on Computer Vision, ICCV 1999, vol. 2, p. 1150. IEEE Computer Society, Washington, DC (1999). http://dl.acm.org/citation.cfm?id=850924.851523

  20. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence, IJCAI 1981, vol. 2, pp. 674–679. Morgan Kaufmann Publishers Inc., San Francisco (1981). http://dl.acm.org/citation.cfm?id=1623264.1623280

  21. Ng, R., Ramamoorthi, R., Hanrahan, P.: All-frequency shadows using non-linear wavelet lighting approximation. ACM Trans. Graph. 22(3), 376–381 (2003)

    Article  Google Scholar 

  22. Ng, R., Ramamoorthi, R., Hanrahan, P.: Triple product wavelet integrals for all-frequency relighting. In: ACM SIGGRAPH 2004 Papers, SIGGRAPH 2004, pp. 477–487. ACM, New York (2004)

    Google Scholar 

  23. Papagiannakis, G., Foni, A., Magnenat-Thalmann, N.: Practical precomputed radiance transfer for mixed reality. In: Proceedings of Virtual Systems and Multimedia 2005, pp. 189–199. VSMM Society (2005)

    Google Scholar 

  24. Raskar, R., Welch, G., Cutts, M., Lake, A., Stesin, L., Fuchs, H.: The office of the future: A unified approach to image-based modeling and spatially immersive displays. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1998, pp. 179–188. ACM, New York (1998). http://doi.acm.org/10.1145/280814.280861

  25. Scaramuzza, D., Fraundorfer, F.: Visual odometry : Part i - the first 30 years and fundamentals. IEEE Robotics Automation Magazine 18(4) (2011)

    Google Scholar 

  26. Shi, J., Tomasi, C.: Good features to track. In: 1994 Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1994, pp. 593–600 (June 1994)

    Google Scholar 

  27. Sloan, P.P., Kautz, J., Snyder, J.: Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. In: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2002, pp. 527–536. ACM, New York (2002)

    Google Scholar 

  28. Tsai, Y.T., Shih, Z.C.: All-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximation. In: ACM SIGGRAPH 2006 Papers, SIGGRAPH 2006, pp. 967–976. ACM, New York (2006). http://doi.acm.org/10.1145/1179352.1141981

  29. Vr, O.: Oculus rift - virtual reality headset for 3d gaming (2012). http://www.oculusvr.com/ (accessed May 7, 2014)

  30. Wang, J., Ren, P., Gong, M., Snyder, J., Guo, B.: All-frequency rendering of dynamic, spatially-varying reflectance. In: ACM SIGGRAPH Asia 2009 Papers, SIGGRAPH Asia 2009, pp. 133:1–133:10. ACM, New York (2009). http://doi.acm.org/10.1145/1661412.1618479

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick Michiels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Michiels, N., Jorissen, L., Put, J., Bekaert, P. (2014). Interactive Augmented Omnidirectional Video with Realistic Lighting. In: De Paolis, L., Mongelli, A. (eds) Augmented and Virtual Reality. AVR 2014. Lecture Notes in Computer Science(), vol 8853. Springer, Cham. https://doi.org/10.1007/978-3-319-13969-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13969-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13968-5

  • Online ISBN: 978-3-319-13969-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics