Skip to main content

3D Model Visualization and Interaction Using a Cubic Fiducial Marker

  • Conference paper
  • First Online:
Augmented and Virtual Reality (AVR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8853))

Included in the following conference series:

Abstract

Fiducial markers are generally used for tracking the camera position and orientation in augmented reality applications. The tracking performance of existing markers degrades due to marker occlusion. Similarly it does not support 3600 rotation in all axes and consequently it becomes difficult to achieve realistic/intuitive manipulation & visualization of virtual objects/contents. This paper presents the applications of a cubic marker in 3D models visualization and interaction and overcomes the above challenges. A cube having six fiducial markers, each on its face is used to be tracked from a single camera. The corners of the cubic marker are used to find its center. A 3D model is visualized on the center point of the real cubic maker. This cubic marker produces robust tracking results during occlusion. The visualization of 3D virtual models and interaction with these models are more realistic and ergonomic using the cubic marker.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Siltanen, S.: Theory and Applications of Marker-Based Augmented Reality. In: Science, V. (ed.) VTT Technical Research Centre of Finland, P.O. Box 1000 (Vuorimiehentie 5, Espoo) FI-02044 VTT, Finland (2012)

    Google Scholar 

  2. Krevelen, D.W.F.V., Poelman, R.: A Survey of Augmented Reality Technologies, Applications and Limitations. The International Journal of Virtual Reality 9, 1–20 (2010)

    Google Scholar 

  3. Hoff, W.A., Nguyen, K.: Computer Vision-Based Registration Techniques for Augmented Reality. In: Proceedings of Intelligent Robots and Computer Vision XV, SPIE 1996. Boston 2904, pp. 538–548 (1996)

    Google Scholar 

  4. Azuma, R.T.: A Survey of Augmented Reality. Presence: Teleoperators and Virtual Environments, pp. 355–385 (1997)

    Google Scholar 

  5. Genc, Y., Riedel, S., Souvannavong, F., Akinlar, C., Navab, N.: Marker-less Tracking for AR: A Learning-Based Approach. In: International Symposium on Mixed and Augmented Reality, (ISMAR 2002), pp. 295–304 (2002)

    Google Scholar 

  6. Zhou, F., Duh, H.B.-L., Billinghurst, M.: Trends in Augmented Reality Tracking, Interaction and Display: A Review of Ten Years of ISMAR. In: IEEE International Symposium on Mixed and Augmented Reality, (ISMAR 2008), pp. 193–202 (2008)

    Google Scholar 

  7. Yang, P., Wu, W., Moniri, M., Chibelushi, C.C.: A Sensor-based SLAM Algorithm for Camera Tracking in Virtual Studio. International Journal of Automation and Computing 05, 152–162 (2008)

    Article  Google Scholar 

  8. Bajura, M., Ulrich, N.: Dynamic Registration Correction in Video-Based Augmented Reality Systems. IEEE Computer Graphics and Applications 15, 52–60 (1995)

    Article  Google Scholar 

  9. Comport, A.I., Marchand, E., Chaumette, F.: A Real-time Tracker for Markerless Augmented Reality. In: 2nd International Symposium on Mixed and Augmented Reality, (ISMAR 2003), pp. 36–45 (2003)

    Google Scholar 

  10. Chia, K.W., Cheok, A.D., Prince., S.J.D.: Online 6 DOF Augmented Reality Registration from Natural Features. In: 1st International Symposium on Mixed and Augmented Reality (ISMAR 2002), pp. 305–313 (2002)

    Google Scholar 

  11. Ferrari, V., Tuytelaars, T., Gool, L.V.: Markerless Augmented Reality with a Real-time Affine Region Tracker. In: 2nd International Symposium on Augmented Reality, (ISAR 2001), pp. 87–96 (2001)

    Google Scholar 

  12. Gross, M., Würmlin, S., Naef, M., Lamboray, E., Spagno, C., Kunz, A., Koller-Meier, E., Svoboda, T., Gool, L.V., Lang, S., Strehlke, K., Moere, A.V.d., Staadt, O.: Blue-C: A Spatially Immersive Display and 3D Video Portal for Telepresence. ACM Transaction Graphics, vol. 22, pp. 819–827 (2003)

    Google Scholar 

  13. Rabbi, I., Ullah, S.: A Survey on Augmented Reality Challenges and Tracking. ACTA Graphica 24, 29–46 (2013)

    Google Scholar 

  14. Naimark, L., Foxlin, E.: Circular Data Matrix Fiducial System and Robust Image Processing for a Wearable Vision-Inertial Self-Tracker. In: International Symposium on Mixed and Augmented Reality (ISMAR 2002), pp. 27–36 (2002)

    Google Scholar 

  15. Ababsa, F., Mallem, M.: Robust Camera Pose Estimation using 2D Fiducials Tracking for Real-Time Augmented Reality Systems. In: Proceedings of ACM SIGGRAPH International Conference on Virtual-Reality Continuum and its Applications in Industry (VRCAI 2004), pp. 431–435 (2004)

    Google Scholar 

  16. Möhring, M., Lessig, C., Bimber, O.: Video See-Through AR on Consumer Cell Phones. In: 3th IEEE/ACM international Symposium on Mixed and Augmented Reality (ISMAR 2004), pp. 252–253 (2004)

    Google Scholar 

  17. Steinbis, J., Hoff, W., Vincent, T.L.: 3D Fiducials for Scalable AR Visual Tracking. In: IEEE International Symposium on Mixed and Augmented Reality, (ISMAR 2008), pp. 183–184 (2008)

    Google Scholar 

  18. Maidi, M., Didier, J.-Y., Ababsa, F., Mallem, M.: A Performance Study for Camera Pose Estimation using Visual Marker Based Tracking. Machine Vision and Application 21, 365–376 (2010)

    Article  Google Scholar 

  19. Bishop, G., Welch, G.: An Introduction to the Kalman Filter. In: SIGGRAPH 2001 (2001)

    Google Scholar 

  20. Dhome, M., Richetin, M., Lapreste, J.T., Rives, G.: Determination of the Attitude of 3D Objects from a Single Perspective View. IEEE Transaction. Pattern Analysis Machine Intelligence 11, 1265–1278 (1989)

    Article  Google Scholar 

  21. Donoser, M., Kontschieder, P., Bischof, H.: Robust Planar Target Tracking and Pose Estimation from a Single Concavity. In: 10th IEEE International Symposium on Mixed and Augmented Reality (ISMAR 2011), pp. 9–15 (2011)

    Google Scholar 

  22. Ito, E., Okatani, T., Deguchi, K.: Accurate and Robust Planar Tracking Based on a Model of Image Sampling and Reconstruction Process. In: 10th IEEE International Symposium on Mixed and Augmented Reality (ISMAR 2011), pp. 1–8 (2011)

    Google Scholar 

  23. Lieberknecht, S., Huber, A., Ilic, S., Benhimane, S.: RGB-D Camera-Based Parallel Tracking and Meshing. In: 10th IEEE International Symposium on Mixed and Augmented Reality (ISMAR 2011), pp. 147–155 (2011)

    Google Scholar 

  24. Seo, J., Shim, J., Choi, J.H., Park, J., Han, T-d: Enhancing Marker-Based AR Technology. In: Shumaker, R. (ed.) Virtual and Mixed Reality, HCII 2011, Part I. LNCS, vol. 6773, pp. 97–104. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  25. Rabbi, I., Ullah, S., Rahman, S.U., Alam, A.: Extending the Functionality of ARToolKit to Semi Controlled/Uncontrolled Environment. INFORMATION 17, 2823–2832 (2014)

    Google Scholar 

  26. Kato, H., Billinghurst, M., Poupyrev, I.: ARToolKit 2.33 Manual (2000)

    Google Scholar 

  27. ARToolKit. “ARTooKit”, [visited January 14, 2013] Available from: http://www.hitl.washington.edu/artoolkit/

  28. ARToolkitPlus. “ARToolKitPlus”, [visited January 17, 2013]. http://studierstube.icg.tugraz.ac.at/handheld_ar/artoolkitplus.php

  29. ARTag. “Augmeneted Reality system”, [visited January 14, 2013] Available from: http://www.artag.net

  30. ALVAR. “ALVAR – A Library for Virtual and Augmented Reality”, [visited January 16, 2013] Available from: www.vtt.fi/multimedia/alvar.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ihsan Rabbi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Rabbi, I., Ullah, S. (2014). 3D Model Visualization and Interaction Using a Cubic Fiducial Marker. In: De Paolis, L., Mongelli, A. (eds) Augmented and Virtual Reality. AVR 2014. Lecture Notes in Computer Science(), vol 8853. Springer, Cham. https://doi.org/10.1007/978-3-319-13969-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13969-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13968-5

  • Online ISBN: 978-3-319-13969-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics