Skip to main content

Optical Flow Computation in the Presence of Spatially-Varying Motion Blur

  • Conference paper
Advances in Visual Computing (ISVC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8887))

Included in the following conference series:

Abstract

While most of the techniques for inferring optical flow are based on the brightness constancy assumption, various conditions including the presence of motion blur evidently violate this fundamental presumption. If the source image and the target image appear to be dissimilar due to different blur kernels, traditional methods will fail to achieve accurate results. We present a new method, MB-CLG, that considers constructing a new pair of blurred frames, followed by regular optical flow computation. The proposed method employs a coarse-to-fine approach, in conjunction with a smoothness matrix to account for occluded regions. Rather than warping frames or precomputing a large grid of derivatives, MB-CLG warps the flows at each iteration. This leads to lower computational cost, and requires less data storage. Based on the results for various sequences, MB-CLG outperforms existing optical flow methods in the sense of AAE, AEP and MSE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tull, D., Katsaggelos, A.: Regularized blur-assisted displacement field estimation. In: Proc. International Conference on Image Processing, vol. 3, pp. 85–88 (1996)

    Google Scholar 

  2. Jin, H., Favaro, P., Cipolla, R.: Visual tracking in the presence of motion blur. In: CVPR 2005, vol. 2, pp. 18–25 (2005)

    Google Scholar 

  3. Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Intl. Conf. on Artificial Intelligence, pp. 674–679 (1981)

    Google Scholar 

  4. Horn, B.K., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  5. Bruhn, A., Weickert, J., Schnörr, C.: Lucas/kanade meets horn/schunck: Combining local and global optic flow methods. Intl. J. of Computer Vision 61, 211–231 (2005)

    Article  Google Scholar 

  6. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping, pp. 25–36. Springer (2004)

    Google Scholar 

  7. Sun, D., Roth, S., Black, M.: Secrets of optical flow estimation and their principles. In: CVPR 2010, pp. 2432–2439 (2010)

    Google Scholar 

  8. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vision 92, 1–31 (2011)

    Article  Google Scholar 

  9. Black, M.J., Anandan, P.: The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields. Comput. Vis. Image Underst. 63, 75–104 (1996)

    Article  Google Scholar 

  10. Lee, D., Jeong, S., Lee, Y., Song, B.C.: Video deblurring algorithm using accurate blur kernel estimation and residual deconvolution based on a blurred-unblurred frame pair. IEEE Transactions on Image Processing 22, 926–940 (2013)

    Article  MathSciNet  Google Scholar 

  11. Yuan, L., Sun, J., Quan, L., Shum, H.Y.: Blurred/non-blurred image alignment using sparseness prior. In: ICCV, pp. 1–8 (2007)

    Google Scholar 

  12. Cho, S., Matsushita, Y., Lee, S.: Removing non-uniform motion blur from images. In: ICCV 2007, pp. 1–8 (2007)

    Google Scholar 

  13. Mei, C., Reid, I.: Modeling and generating complex motion blur for real-time tracking. In: CVPR 2008, pp. 1–8 (2008)

    Google Scholar 

  14. Portz, T., Zhang, L., Jiang, H.: Optical flow in the presence of spatially-varying motion blur. In: IEEE CVPR, pp. 1752–1759 (2012)

    Google Scholar 

  15. Weickert, J., Schnörr, C.: A theoretical framework for convex regularizers in pde-based computation of image motion. Intl. J. of Comput. Vision 45, 245–264 (2001)

    Article  MATH  Google Scholar 

  16. Liu, C.: Beyond Pixels: Exploring New Representations and Applications for Motion Analysis. Doctoral thesis, Massachusetts Institute of Technology (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Daraei, M.H. (2014). Optical Flow Computation in the Presence of Spatially-Varying Motion Blur. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2014. Lecture Notes in Computer Science, vol 8887. Springer, Cham. https://doi.org/10.1007/978-3-319-14249-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14249-4_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14248-7

  • Online ISBN: 978-3-319-14249-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics