Skip to main content

Human Centered Scene Understanding Based on Depth Information – How to Deal with Noisy Skeleton Data?

  • Conference paper
Advances in Visual Computing (ISVC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8887))

Included in the following conference series:

  • 3748 Accesses

Abstract

Scene understanding is a challenging task and and mainly based on geometric or object centered approaches. Hence, the aim of this paper to introduce a novel human centered approach for scene analysis and tackle challenges of noisy long-term tracking data obtained by a depth sensor. Hence, fast filtering mechanisms are proposed to filter noisy tracking data, reducing the number of outliers and thus significantly improving the accuracy of the detection of walking and sitting areas within indoor environments. Evaluation is performed on two different scenes containing 18 and 34 days of tracking data and shows that detecting and filtering invalid tracking information dramatically increases the accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. OpenNI (2011), http://www.openni.org (accessed April 10, 2014)

  2. Azimi, M.: Skeletal Joint Smoothing (2012), http://msdn.microsoft.com/en-us/library/jj131429.aspx (accessed April 10, 2014)

  3. Delaitre, V., Fouhey, D.F., Laptev, I., Sivic, J., Gupta, A., Efros, A.A.: Scene semantics from long-term observation of people. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 284–298. Springer, Heidelberg (2012), doi:10.1007/978-3-642-33783-3_21

    Chapter  Google Scholar 

  4. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object Detection with Discriminatively Trained Part-Based Models. Transactions on Pattern Analysis and Machine Intelligence (PAMI) 32(9), 1627–1645 (2010)

    Article  Google Scholar 

  5. Fouhey, D.F., Delaitre, V., Gupta, A., Efros, A.A., Laptev, I., Sivic, J.: People Watching: Human Actions as a Cue for Single View Geometry. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 732–745. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Gupta, A., Satkin, S., Efros, A.A., Hebert, M.: From 3D scene geometry to human workspace. In: Proc. of the Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1961–1968. IEEE (June 2011)

    Google Scholar 

  7. Gupta, S., Arbelaez, P., Malik, J.: Perceptual Organization and Recognition of Indoor Scenes from RGB-D Images. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 564–571 (2013)

    Google Scholar 

  8. Holz, D., Holzer, S., Rusu, R.B., Behnke, S.: Real-Time Plane Segmentation Using RGB-D Cameras. In: Röfer, T., Mayer, N.M., Savage, J., Saranlı, U. (eds.) RoboCup 2011. LNCS, vol. 7416, pp. 306–317. Springer, Heidelberg (2012)

    Google Scholar 

  9. Lu, J., Wang, G.: Human-centric indoor environment modeling from depth videos. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012 Ws/Demos, Part II. LNCS, vol. 7584, pp. 42–51. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Mutch, J., Lowe, D.G.: Multiclass Object Recognition with Sparse, Localized Features. In: Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 11–18 (2006)

    Google Scholar 

  11. Planinc, R., Kampel, M.: Robust Fall Detection by Combining 3D Data and Fuzzy Logic. In: Park, J.-I., Kim, J. (eds.) ACCV Workshops 2012, Part II. LNCS, vol. 7729, pp. 121–132. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Tsai, G., Kuipers, B.: Real-time indoor scene understanding using Bayesian filtering with motion cues. In: Proc. of International Conference on Computer Vision (ICCV), pp. 121–128. IEEE (November 2011)

    Google Scholar 

  13. Yang, Y., Ramanan, D.: Articulated pose estimation with flexible mixtures-of-parts. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1385–1392 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Planinc, R., Kampel, M. (2014). Human Centered Scene Understanding Based on Depth Information – How to Deal with Noisy Skeleton Data?. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2014. Lecture Notes in Computer Science, vol 8887. Springer, Cham. https://doi.org/10.1007/978-3-319-14249-4_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14249-4_58

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14248-7

  • Online ISBN: 978-3-319-14249-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics