Abstract
Detecting of unusual/abnormal event is a popular research in the area of event analysis. Unlike conventional methods that focus on the motion, we tackle a new problem for detecting an unusual appearance in a surveillance video. However, in case of appearance feature, static appearance is so dominant that the biased learning problem can occur. To avoid this problem, we propose a new learning scheme with adaptive learning rate. Moreover, to reduce the noisy detection, we also suggest a spatio-temporal decision scheme. Experimental results show the effectiveness of the proposed method to detect unusual appearances qualitatively and quantitatively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hospedales, T., Gong, S., Xiang, T.: A Markov Clustering Topic Model for mining behaviour in video. In: ICCV (2009)
Kuettel, D., Breitenstein, M.D., Van Gool, L., Ferrari, V.: What’s going on? discovering spatio-temporal dependencies in dynamic scenes. In: CVPR (2010)
Emonet, R., Varadarajan, J., Odobez, J.M.: Extracting and locating temporal motifs in video scenes using a hierarchical non parametric Bayesian model. In: CVPR (2011)
Jeong, H., Yoo, Y., Yi, K.M., Choi, J.Y.: Two-stage online inference model for traffic pattern analysis and anomaly detection. Machine Vision and Applications 25, 1501–1517 (2014)
Hu, W., Xiao, X., Fu, Z., Xie, D., Tan, T., Maybank, S.: A system for learning statistical motion patterns. PAMI 28, 1450–1464 (2006)
Basharat, A., Gritai, A., Shah, M.: Learning object motion patterns for anomaly detection and improved object detection. In: CVPR (2008)
Kratz, L., Nishino, K.: Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models. In: CVPR (2009)
Rodriguez, M., Ali, S., Kanade, T.: Tracking in unstructured crowded scenes. In: ICCV (2009)
Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model. In: CVPR (2009)
Wang, B., Ye, M., Li, X., Zhao, F., Ding, J.: Abnormal crowd behavior detection using high-frequency and spatio-temporal features. Machine Vision and Applications 23, 501–511 (2011)
Cong, Y., Yuan, J., Liu, J.: Sparse reconstruction cost for abnormal event detection. In: CVPR (2011)
Lu, C., Shi, J., Jia, J.: Abnormal event detection at 150 fps in matlab. In: ICCV (2013)
Zhao, B., Fei-Fei, L., Xing, E.P.: Online detection of unusual events in videos via dynamic sparse coding. In: CVPR (2011)
Breitenstein, M.D., Grabner, H., Van Gool, L.: Hunting nessie-real-time abnormality detection from webcams. In: ICCV Workshops (2009)
Schuster, R., Mörzinger, R., Haas, W., Grabner, H., Van Gool, L.: Real-time detection of unusual regions in image streams. In: International Conference on Multimedia, pp. 1307–1310 (2010)
Schuster, R., Schulter, S., Poier, G., Hirzer, M.: Multi-Cue Learning and Visualization of Unusual Events. In: ICCV Workshops (2011)
Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: CVPR (1999)
Murray, N., Perronnin, F.: Generalized max pooling. In: CVPR (2014)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)
UCSD: Anomaly dataset (2010), http://www.svcl.ucsd.edu/projects/anomaly/dataset.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Yun, K., Kim, J., Kim, S.W., Jeong, H., Choi, J.Y. (2014). Learning with Adaptive Rate for Online Detection of Unusual Appearance. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2014. Lecture Notes in Computer Science, vol 8887. Springer, Cham. https://doi.org/10.1007/978-3-319-14249-4_67
Download citation
DOI: https://doi.org/10.1007/978-3-319-14249-4_67
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-14248-7
Online ISBN: 978-3-319-14249-4
eBook Packages: Computer ScienceComputer Science (R0)