Skip to main content

Learning with Adaptive Rate for Online Detection of Unusual Appearance

  • Conference paper
Advances in Visual Computing (ISVC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8887))

Included in the following conference series:

  • 3767 Accesses

Abstract

Detecting of unusual/abnormal event is a popular research in the area of event analysis. Unlike conventional methods that focus on the motion, we tackle a new problem for detecting an unusual appearance in a surveillance video. However, in case of appearance feature, static appearance is so dominant that the biased learning problem can occur. To avoid this problem, we propose a new learning scheme with adaptive learning rate. Moreover, to reduce the noisy detection, we also suggest a spatio-temporal decision scheme. Experimental results show the effectiveness of the proposed method to detect unusual appearances qualitatively and quantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hospedales, T., Gong, S., Xiang, T.: A Markov Clustering Topic Model for mining behaviour in video. In: ICCV (2009)

    Google Scholar 

  2. Kuettel, D., Breitenstein, M.D., Van Gool, L., Ferrari, V.: What’s going on? discovering spatio-temporal dependencies in dynamic scenes. In: CVPR (2010)

    Google Scholar 

  3. Emonet, R., Varadarajan, J., Odobez, J.M.: Extracting and locating temporal motifs in video scenes using a hierarchical non parametric Bayesian model. In: CVPR (2011)

    Google Scholar 

  4. Jeong, H., Yoo, Y., Yi, K.M., Choi, J.Y.: Two-stage online inference model for traffic pattern analysis and anomaly detection. Machine Vision and Applications 25, 1501–1517 (2014)

    Article  Google Scholar 

  5. Hu, W., Xiao, X., Fu, Z., Xie, D., Tan, T., Maybank, S.: A system for learning statistical motion patterns. PAMI 28, 1450–1464 (2006)

    Article  Google Scholar 

  6. Basharat, A., Gritai, A., Shah, M.: Learning object motion patterns for anomaly detection and improved object detection. In: CVPR (2008)

    Google Scholar 

  7. Kratz, L., Nishino, K.: Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models. In: CVPR (2009)

    Google Scholar 

  8. Rodriguez, M., Ali, S., Kanade, T.: Tracking in unstructured crowded scenes. In: ICCV (2009)

    Google Scholar 

  9. Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model. In: CVPR (2009)

    Google Scholar 

  10. Wang, B., Ye, M., Li, X., Zhao, F., Ding, J.: Abnormal crowd behavior detection using high-frequency and spatio-temporal features. Machine Vision and Applications 23, 501–511 (2011)

    Article  Google Scholar 

  11. Cong, Y., Yuan, J., Liu, J.: Sparse reconstruction cost for abnormal event detection. In: CVPR (2011)

    Google Scholar 

  12. Lu, C., Shi, J., Jia, J.: Abnormal event detection at 150 fps in matlab. In: ICCV (2013)

    Google Scholar 

  13. Zhao, B., Fei-Fei, L., Xing, E.P.: Online detection of unusual events in videos via dynamic sparse coding. In: CVPR (2011)

    Google Scholar 

  14. Breitenstein, M.D., Grabner, H., Van Gool, L.: Hunting nessie-real-time abnormality detection from webcams. In: ICCV Workshops (2009)

    Google Scholar 

  15. Schuster, R., Mörzinger, R., Haas, W., Grabner, H., Van Gool, L.: Real-time detection of unusual regions in image streams. In: International Conference on Multimedia, pp. 1307–1310 (2010)

    Google Scholar 

  16. Schuster, R., Schulter, S., Poier, G., Hirzer, M.: Multi-Cue Learning and Visualization of Unusual Events. In: ICCV Workshops (2011)

    Google Scholar 

  17. Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: CVPR (1999)

    Google Scholar 

  18. Murray, N., Perronnin, F.: Generalized max pooling. In: CVPR (2014)

    Google Scholar 

  19. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)

    Google Scholar 

  20. UCSD: Anomaly dataset (2010), http://www.svcl.ucsd.edu/projects/anomaly/dataset.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Yun, K., Kim, J., Kim, S.W., Jeong, H., Choi, J.Y. (2014). Learning with Adaptive Rate for Online Detection of Unusual Appearance. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2014. Lecture Notes in Computer Science, vol 8887. Springer, Cham. https://doi.org/10.1007/978-3-319-14249-4_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14249-4_67

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14248-7

  • Online ISBN: 978-3-319-14249-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics