Migration Techniques in HPC Environments

Simon Pickartz!**, Ramy Gad®*, Stefan Lankes', Lars Nagel®>*, Tim Sii?,
André Brinkmann?, and Stephan Krempel?

! Institute for Automation of Complex Power Systems,
E.ON Energy Research Center, RWTH Aachen University, Aachen, Germany
{spickartz,slankes}@eonerc.rwth-aachen.de
2 Zentrum fiir Datenverarbeitung, Johannes Gutenberg Universitdt, Mainz, Germany
{gad,nagell,suesst,brinkman}@uni-mainz.de
3 ParTec Cluster Competence Center GmbH, Munich, Germany
krempel@par-tec.com

Abstract. Process migration is an important feature in modern com-
puting centers as it allows for a more efficient use and maintenance of
hardware. Especially in virtualized infrastructures it is successfully ex-
ploited by schemes for load balancing and energy efficiency. One can
divide the tools and techniques into three groups: Process-level migra-
tion, virtual machine migration, and container-based migration.

This paper presents a qualitative and quantitative investigation of
the different migration types for their application in High-Performance
Computing (HPC). In addition to an overhead analysis of the various
migration frameworks, our performance indicators include the migration
time. The overall analysis suggests that VM migration has the most
advantages and can even compete performance-wise.

The results are applied in the research project FAST addressing the
problem of process scheduling in exascale environments. It is assumed
that a shift in hardware architectures will result in a growing gap be-
tween the performance of CPUs and that of other resources like I/O. To
avoid that these resources become bottlenecks, we suggest to monitor
key performance indicators and, if conducive, trigger local amendments
to the schedule requiring the efficient migration of jobs so that the down-
time is reduced to a minimum.

1 Introduction

The fastest computers listed in the Top 500 are able to execute 10! FLOPS.
The next generation of computer clusters will move into new dimensions and be
a hundred times faster. Such ezascale computers will not have significantly more
nodes, but considerably more cores per node. It is predicted that this increase
of CPU performance will not be matched by other resources resulting in an
imbalance between CPU performance on the one hand and I/O performance on
the other hand [1].

* Supported by the Federal Ministry of Education and Research (BMBF) under Grant
01IH13004B (Project FAST).

L. Lopes et al. (Eds.): Euro-Par 2014 Workshops, Part II, LNCS 8806, pp. 486-497, 2014.
© Springer International Publishing Switzerland 2014

Migration Techniques in HPC Environments 487

The FAST! project develops dynamic scheduling strategies balancing the sys-
tem’s load such that resource bottlenecks are avoided. It is assumed that the
exclusive assignment of jobs to nodes or vice versa will be inefficient, if not im-
possible, for computing centers of the exascale area. In fact, it will be necessary
to schedule (sub-)jobs subject to their resource requirements. The approach in
FAST is twofold: (1) an initial placement of the jobs provided by a global sched-
uler, (2) local adjustments by the migration of jobs to other nodes during the
applications’ runtime.

In this paper we present an investigation of migration techniques that can
be part of the solution to the second problem. We discuss their qualitative and
quantitative properties and determine virtualization as the solution most suitable
for FAST. Generally, there are three types of migration, namely process-level,
virtual machine, and container-based migration. The first is supposed to have
the least overhead, as it restricts the migrating only to the process and its con-
text. Yet, the gathering of the context can be a problem and is certainly easier
when most of it is already wrapped into a VM or container. Other advantages
of Virtual Machines (VMs) and containers are the support of live migration and
the ability to run on basically any system, while existing tools for process-level
migration do not offer live migration and usually require a homogenous cluster.
Finally, the decisive factors pro virtualization are (1) that in contrast to con-
tainers a more flexible range of application is provided, e. g., guest and host do
not necessarily have to use equivalent operating systems, and (2) that the exper-
iments conducted reveal a competitive performance of virtualization including
the migration itself compared to the other approaches.

The rest of the paper is structured as follows: First we explain the different
types of migration in Section 2, display their pros and cons, and give a detailed
survey of the related work. In Section 3 we describe the experiments and analyze
their results. Section 4 concludes the paper with a summary and future work.

2 Process Migration in HPC Environments

In this section we discuss three different approaches for the realization of pro-
cess migration. The first, process-level migration, achieves minimal overhead by
restricting the transferred data to the process and its context. Virtual machine
migration provides more flexibility and a migration framework that can be in-
tegrated more easily. Finally, container-based migration is discussed depicting a
compromise between these two approaches.

2.1 Process-Level Migration

Migration on the process-level is the operation of moving a process, i.e., the
execution context of a running program including registers and physical memory
addresses, from one node to another. Process-level migration can be regarded as a

! Find a Suitable Topology for Exascale Applications (FAST) is a project funded by
Germany’s Federal Ministry of Education and Research (BMBF).

488 S. Pickartz et al.

special kind of Checkpoint/Restart (C/R) operation where a checkpoint is copied
to another node before it is restarted [2]. While C/R mechanisms are intended
to recover long-running applications in case of node failures, process migration
techniques may have other motivations. Besides the prevention of application
interruptions due to node failures [3], they can also be used for the conductance
of readjustments to the cluster’s workload to improve energy efficiency or balance
the load more evenly, like in FAST.

There are several C/R implementations available such as Condor’s checkpoint
library, the libckpt library, and Berkley Lab Checkpoint/Restart (BLCR) [4-6].
We use BLCR for the evaluation of process-level migration because the open
source tool was specifically designed for HPC applications. It targets at CPU and
memory intensive batch-scheduled parallel jobs and consists of two components:
a kernel module performing the C/R operations inside the Linux kernel and a
shared library enabling the access to user-space data [7]. This library needs to be
loaded with the application to activate the support for checkpointing. Applica-
tions using sockets, block devices, or SystemV IPC mechanisms are not natively
supported by BLCR. However, Sankaran et al. developed in [8] an extension to
LAM/MPI with a callback interface enabling any library or application code to
cooperate in the C/R procedure. This allows for closing communication chan-
nels prior to the migration and restoring them afterwards [7]. Meanwhile, the
callback interface is availabe for LAM/MPI 7.x, MPICH, and Open MPI [8,9].

For the evaluation of process-level migration, we chose Open MPI 1.7 and its
BLCR plug-in. Migrations are initiated by the ompi-checkpoint command cre-
ating a checkpoint of the running MPI job on the source nodes. After killing
the job and all its processes, the checkpoint file containing their states is copied
to the destination nodes, and the job is restarted by calling ompi-restart. The
successful restoration of the job demands all libraries and files required for its
execution to be present in exactly the same version on all nodes participating in
the migration and prelinking of shared libraries has to be disabled. Prelinking is
a feature which is used by some Linux distributions to perform a relocation of
library code in advance of its execution. This technique accelerates the startup
of applications by the assignment of fixed addresses to shared libraries. Further-
more, the source and destination nodes should have the same kernel version and
hardware architecture. A successful migration of a process to a remote node is
only possible if all resources that were allocated at the origin, i.e., the residual
dependencies, are provided by the migration target as well [10]. With resources
like communication channels, open files, or subprocesses this is not possible, as
the respective file descriptors would not be valid on the target host and had
to be closed in advance of the migration. This restriction could require a non-
transparent migration from the application’s point of view.

2.2 Virtual Machine Migration

As an alternative to process-level migration we investigate the deployment of
VMs which reduce the aforementioned problem of residual dependencies [11].
Open files and virtual I/O devices do not cause any problems as the according

Migration Techniques in HPC Environments 489

descriptors are still valid within the resumed VM on the target node. The only
residual dependencies that remain are the Instruction Set Architecture (ISA) as
well as the hardware state of the virtualized devices. Since most hardware can
be virtualized efficiently, these dependencies generally do not cause any issues. If
the origin and target Virtual Machine Monitor (VMM) have the same hardware
configuration, the latter only needs to receive the guest memory state and the
guest device model state in order to start the VM on the new host. Thus, a
migration transparent to the application can be realized.

I/0 Virtualization. In contrast to CPUs and memory components of VMs;, the
virtualization of I/O devices may result in an unacceptable performance degra-
dation. The emulation of high-performance networks like InfiniBand with native
performance is still not possible. For this reason virtualization has mostly been
disregarded in the area of HPC in the last years [12]. However, progress in this
field of research accompanied by new hardware technologies changed this sit-
uation [13]|. Driven by industry, a shift to cloud computing approaches can be
observed in the area of HPC [14].

With Intel VT-d extensions it is possible to perform a physical device pass-
through to a VM while providing DMA and interrupt isolation [15]. This tech-
nology gives I/O devices direct access to the memory space of a VM. The VM,
in turn, is able to control the device by accessing the according hardware reg-
isters without intervention by the host system. However, this solution suffers
from scalability issues as one physical device can only be assigned to exactly one
VM at a time. Hence, if a single VM was used per high-performance process,
one physical Host Channel Adapter (HCA) would be required per process. Such
a setup would dramatically reduce the maximal amount of processes per node
within a cluster.

A solution to this issue is addressed by the Peripheral Component Intercon-
nect Special Interest Group (PCI-SIG) with the Single Root I/O Virtualiza-
tion (SR-IOV) specification. This technology enables the native sharing of 1/O
devices by a replication of all necessary resources for each VM [16]. For this
purpose, two new PCle function types are introduced, namely Physical Func-
tions (PFs) and Virtual Functions (VFs). An I/O device supporting SR-IOV
may be configured to appear in the PCI configuration as multiple functions in-
cluding one and only one PF. This function covers all PCle capabilities including
SR-IOV. Furthermore, there may be several VFs covering the necessary capa-
bilities for data movement. Each of these VFs may then be assigned to one VM
with the mechanisms described above. Although the VMs get the impression of
possessing the I/O device exclusively, they share the same physical device with
nearly native performance.

Hypervisor. There is a variety of virtualization techniques and tools today in-
cluding Xen and KVM [17,18]. Although the former has been the tool of choice
in the open source world in the past, KVM is taking over this status more and
more [14]. While Xen is a bare-metal hypervisor, KVM is integrated into Linux
as kernel-module, and hence benefits from existing resources like the scheduler,

490 S. Pickartz et al.

the memory management, etc. The tight integration into the upstream Linux
kernel with version 2.6.20 in 2007 allows KVM to take advantage of the kernels
evolution [19]. Bugfixes and improvements within the kernel code will automati-
cally apply to KVM-based systems using the current kernel version. In contrast,
Xen is still not part of the Linux kernel and patches have to be applied explicitly.
These facts led to the decision to focus on KVM as basis for the virtualization
approach. It was further supported by performance evaluations showing that
KVM is at least as good as other hypervisors [14].

KVM is providing full virtualization on x86 hardware depending on the VT-x
or AMD-V hardware extensions [20,21]. A VM is started as an ordinary Linux
process that can be scheduled by the host system. If the VM is configured with
more than one virtual CPU, one thread is created for each of them so that they
can be scheduled individually. Furthermore, a migration framework supporting
cold as well as live migration is already provided. Hence, KVM would allow for
the realization of a first prototype of the migration framework within a narrow
time frame.

2.3 Container-Based Migration

Traditional virtualiziation solutions like KVM result in multiple kernel instances
running on one node. A light-weight alternative is Container-based Virtualiza-
tion (or Operating System Virtualization) using the host-sytem kernel for the
managment of so-called virtual containers as well. This concept aims at the
provision of an isolation similar to full virtualization, but promises a better uti-
lization and less overhead. An application running within a container can use
standard system calls to interact with the server system but does not have to
use hypercalls, e.g., when accessing virtualized I/O devices. However, this vir-
tualization approach comes along with a certain inflexibility. It is not possible to
run different operating systems on the same hardware and a crash of the kernel
would halt the complete system, since it is shared among all instances.
OpenVZ? and LinuX Containers (LXC)? are typical representatives of this
virtualization technique. In contrast to LXC, OpenVZ is not part of the vanilla
Linux kernel, although efforts have been made to add their container function-
ality to LXC. Regola and Ducom conducted an analysis of OpenVZ with respect
to its application in HPC and could show that some container-based virtual-
ization solutions offer near native CPU and I/O performance [22]. Yet, since
OpenVZ comes with its own kernel, which does not support our new InfiniBand
adapters from Mellanox, we did not analyze OpenVZ more deeply. It would
complicate the integration of new hardware. Figure 1 vizualizes the difference
between container-based and full virtualization in the case of LXC and KVM,
respectively. Both examples present a setup with two VMs und two contain-
ers, respectively. It is visible that container-based virtualization provides lower
overhead as only one kernel instance is required for the host and all containers.

2 https://openvz.org
3 http://www.linuxcontainers.org

https://openvz.org
http://www.linuxcontainers.org

Migration Techniques in HPC Environments 491

Hypervisor Virtualization Layer

(a) KVM (b) LXC

Fig. 1. Comparison of KVM- and LXC-based Virtualization

With Checkpoint/Restore In Userspace (CRIU)?, there exists a mechanism
similar to BLCR for LXC and OpenVZ. Yet, in contrast to BLCR, CRIU allows
live migration® which can be valuable for many applications. Currently, CRIU
offers no support for checkpointing of applications using file locks, block devices,
or System V IPC mechanisms.

Our test system is based on Centos 6.5 constituting an extremely stable sys-
tem. Yet, the LXC part of CentOS is not up to date and it is not possible
to pass through general character devices from the host to the guest. Without
this feature, which is supported by newer versions of LXC, it is not possible to
use InfiniBand in LXC guests. The situation is similar concerning CRIU, which
requires Linux kernel version 3.11 or newer. For these reasons, the quantative
evaluation of LXC and CRIU was postponed.

3 Evaluation

The focus of this paper is a comprehensive evaluation of process-level and VM
migration. Besides a qualitative comparison of these two approaches, a quanti-
tative evaluation is indispensable to make an informed decision. Here, two key
figures are important, namely the general overhead imposed by the respective
migration technique on the application’s performance and the characteristics of
the migration itself in terms of the time needed to transfer a process from one
node to the other.

All benchmarks were performed on an InfiniBand-based cluster comprising
four NUMA nodes exposing 32 virtual cores, each on two sockets with 8 physical
cores. While the hardware assembly is generally equal to all of the systems, two
nodes are equipped with Intel SandyBridge CPUs (E5-2650) clocked at 2 GHz.
The other two host systems are supplied with newer generation Intel IvyBridge

4 http://criu.org/Main_Page
5 http://criu.org/Live_migration

http://criu.org/Main_Page
http://criu.org/Live_migration

492 S. Pickartz et al.

CPUs (E5-2650 v2) clocked at 2.6 GHz. The InfiniBand fabric is built by using
Mellanox hardware. Therefore, each host system is equipped with a ConnectX-
3 VPI two-port HCA implementing the PCle 3.0 standard. The theoretical peak
throughput for point-to-point connections is at 56 Gbit/s in accordance with the
FDR signaling rate and the HCAs implement the SR-IOV technology which can
be enabled and disabled by flashing the adapter’s firmware.

To allow for a comparison of the results, we applied the same optimization
techniques in the test scenarios. On the one hand, low-level benchmarks were
used that came as binary with the Mellanox OFED stack in version 2.1-1.0.6. On
the other hand, applications and benchmarks that are avaiable as source code
were compiled with the same level of optimization.

3.1 Overhead

In order to see the impact of either migration technique on the runtime of our test
application, we started with a general analysis of the overhead caused by them
without actually performing a migration. In case of process-level migration with
BLCR, the requirement of disabling the prelinking feature might have a negative
impact on the application’s performance. In contrast, the VM approach does not
demand any modifications of the executed code. However, the additional software
layer may introduce a certain overhead even if full virtualization is applied. The
VM runs in guest-mode on x86 hardware with virtualization support. On the
execution of a privileged instruction, i.e., an instruction that traps if the CPU
is in user-mode while it does not trap in kernel-mode, the CPU switches to
host-mode returning control back to the hypervisor. Moreover, an additional
overhead might be introduced by the SR-IOV technology. Despite its realization
on the hardware layer, the logic for the multiplexing of the VF's to the hardware
consumes time that might result in performance penalties.

Microbenchmarks. For the investigation of the influence of the respective mi-
gration technique on the communication performance, a microbenchmark analy-
sis was performed in terms of throughput and latency measurements. Therefore,
we compared the results when using one of the two approaches with those ob-
tained by native execution on the host systems. This was done on the MPI layer
by using a self-written PingPong application and Open MPI 1.7 with BLCR
support. For the measurement of the throughput and latency on the InfiniBand
layer the ib_write_bw and ib_write_lat tools were used that come with the
OFED stack.

The latencies on the InfiniBand layer in Table 1 reveal a slight impact of the
SR-IOV technology. Although increased by roughly 27 % compared to native
host execution, the communication latency between two guests equipped with
passed-through VFs is only at 1.16 ps. As the pure pass-through of the InfiniBand
hardware does not have any influence on the latencies, this difference must be
caused by the SR-IOV technology itself. The additional software layer in terms
of the Open MPI results in a further increase of the latency. With 1.48 ps the

Migration Techniques in HPC Environments 493

Table 1. Latencies in ps (RTT/2)

Layer Native Pass-Through SR-IOV BLCR

InfiniBand 0.91 0.90 1.16 -

Open MPI 1.19 1.21 1.48 1.61
InfiniBand Open MPI

Throughput in GiB/s
Throughput in GiB/s

256 2Ki 16Ki 128Ki 1Mi 8Mi 256 2Ki 16Kil28Ki 1Mi 8Mi 64 Mi
Size in Byte Size in Byte

’ —o— Native —+— Pass-Through —— SR-IOV —&— BLCR

Fig. 2. Throughput Results

VM approach still performs slightly better than the native host execution while
having the BLCR feature enabled.

The throughput results (see Fig. 2) show a similar trend. For small message
sizes the SR-IOV technology as well as the BLCR framework have a marginal
influence on the achievable performance. Larger messages instead can be trans-
ferred at nearly native performance. However, the results of the microbenchmark
analysis are so close in all cases that they do not allow to make a decision for
either of the frameworks.

Application Benchmarks. One reference application in the FAST project is
mpiBLAST [23]. This is a parallelization of the BLAST algorithm applied in
biological research that searches in a short query sequence of DNA or amino
acids for similarities within a database of longer sequences.

Like in the previous section, an overhead analysis was conducted comparing
the application runtime with the different frameworks. The left part of Figure 3
summarizes the results of different runs with 8 to 32 processes. A comparison be-
tween the native environment and execution with enabled BLCR yields a slight
increase of the runtime in the order of 1 %. This increase is rather negligible and
affiliates BLCR good performance characteristics in this application scenario. In
contrast, the execution of the same scenario within a virtualized environment
decelerates the runtime by 7% to 8 %. This certainly constitutes an important
performance degradation compared to BLCR and native execution, however it

494 S. Pickartz et al.

mpiBLAST NAS Parallel Benchmarks (Class C)
|

40 |-

30 [
15 | —
20 -
10 |- —

Runtime in Minutes
Speed in GFlop/s

8 Procs. 16 Procs. 32 Procs. FT BT LU

’ I B Native B BLCR [D KVM

Fig. 3. Application Benchmarks

should be kept in mind that there has only been put little effort in the optimiza-
tion of the KVM environment.

A second test was performed with the NAS Parallel Benchmarks (NPBs).
This benchmark suite targets at the emulation of large-scale fluid dynamics
applications [24]. We used the FT kernel calculating a discrete 3D Fast Fourier
Transformation as well as the two pseudo applications, BT and LU, which are
solvers for linear equation systems. The results were obtained by starting the
benchmarks with 16 processes on two hosts, i.e., NUMA effects do not have to
be considered as all processes on one host could be pinned to the same socket.
Here, the results are quite different from the mpiBLAST evaluation. In fact, the
virtualization layer reduces the performance by only 1% outperforming BLCR
which, in turn, generates an overhead of 6 % to 14 %. We think that this overhead
is not caused by the BLCR but rather by the implementation of the callback
interface inside Open MPI in order to support checkpointing with BLCR.

These results lead to the conclusion that the actual overhead generated by the
particular approach is highly application dependent. Both solutions exhibit fairly
good performance results compared to native execution. While BLCR shows
better results for mpiBLAST, though with decreasing advance for higher process
counts, the virtualization approach has the edge over process-level migration for
the NPBs while offering more flexibility as discussed before.

3.2 Migration Time

Finally, an investigation of the migration time was performed. This is a key value
particular important for the evaluation of the differen migration techniques. In
this timeframe the nodes participating in the migration are not responsive and
these phases depict an overhead that has to be compensated by sophisticated
scheduling strategies to improve the overall utilization of the cluster. To perform
this evaluation, the following scenario was conducted.

Migration Techniques in HPC Environments 495

An mpiBLAST job with three processes on two different nodes was started,
i.e., on one node a single process was launched while the other holded two pro-
cesses. The single process was then migrated to a third node not yet participating
in the execution. For the evaluation of the virtualization approach with KVM,
two VMs were launched on the origin nodes. Instead of moving the mpiBLAST
process to a remote node, the VM holding this process was then transferred to
the same remote node.

We started with an evaluation of the overall migration time from initiating
the migration command until its successful return. With the BLCR framework
we were able to migrate the MPI process within 0.51s averaged over multiple
runs. In contrast, the VM migration required 2.87s constituting an important
overhead. The VMs were configured with 256 MiB of RAM. Although a light-
weight CentOS 6.5 installation was used for the guest systems, the migration time
might be reduced by the usage of a minimal kernel only providing the necessary
environment for executing MPI jobs (e.g. a system configured with Buildroot).
We could observe a dependency between the migration time and the assigned
memory when migrating a KVM guest. Hence, a kernel optimized to memory
utlization might improve the results presented above. However, this dependency
has to be further investigated in this context. As we used the libvirt tool set to
access the KVM hypervisor, time is not only consumed by the migration itself
but also by preparatory tasks like establishing connections to the daemons on
the respective host systems. Moreover, the process representing the VM on the
source host has to be properly removed subsequent to the successful migration.

To get an impression of the real downtime of the VM, we wrote a socket-based
PingPong application using the UDP protocol. The server was started on the
VM being migrated. It listens for incoming UDP packets on a dedicated port
and directly responds to the sender. The client was started on one of the cluster
nodes not participating in the migration. This runs two threads, a sender and
a receiver thread. The first posts with a fixed interval of 500 s UDP packets
containing a sequence number while the receiver thread constantly listens for
the responses from the server running in the VM. This benchmarks allows for
the determination of packet losses due to unresponsiveness of the VM during
migration. The actual downtime may then be determined by multiplying the
amount of packets that were not answered with the time interval the packets
have been transmitted.

For the mpiBLAST scenario described above we captured a downtime of
about 1.2s reducing the previously measured advantage of process-level migra-
tion. With KVM it would even be possible to perform a live-migration, i.e., not
stopping the VM during migration. Hu et al. could show that this technique
allows for a considerable decrease of the downtime to the order of 0.2s in the
best case [25]. Furthermore, it should be noted that the current implementation
of BLCR requires all process to be halted in advance of the migration. Within
the VM approach applications may benefit from the fact that only those process
have to be freezed at some point in time that are situated within the migrated
VM.

496 S. Pickartz et al.

4 Conclusion

In this paper two migration techniques have been examined, namely process-level
migration using BLCR and virtual machine migration on top of KVM. We have
conducted a qualitative and a quantitative comparison of these two techniques.
In particular, we have studied the overhead on the application’s performance
imposed by each solution and the characteristics of the migration itself in terms
of the time needed to transfer a process from one node to the other. In accordance
with the presented results, we favor virtual machine migration over process-level
migration for the FAST project. The overhead imposed by the virtualization
layer is acceptable and offers more flexibility in terms of a greater application
range.

In the near future, we will further investigate LXC as a complement to our
migration framework. Although it imposes some restrictions compared to full
virtualization (e. g., host and guest cannot use different kernels), it might have a
better performance which may be more important than flexibility in some cases.
Should it be possible to support both virtualization techniques in FAST, we
will offer them and let end-users choose the one more suitable for their domain.
Besides the implementation of the migration framework, future tasks in FAST
include the development of an agent-based monitoring system and a scheduler
on top of it, which triggers process migrations based on the resource utilization.

References

1. Dongarra, J.: Impact of Architecture and Technology for Extreme Scale on Software
and Algorithm Design. Presented at the Department of Energy Workshop on Cross-
cutting Technologies for Computing at the Exascale (February 2010)

2. Roman, E.: A Survey of Checkpoint/Restart Implementations. Technical report,
Lawrence Berkeley National Laboratory, Tech (2002)

3. Wang, C., Mueller, F., Engelmann, C., Scott, S.: Proactive process-level live mi-
gration in hpc environments. In: International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2008, pp. 1-12 (November 2008)

4. Litzkow, M., Tannenbaum, T., Basney, J., Livny, M.: Checkpoint and Migration of
UNIX Processes in the Condor Distributed Processing System. Technical Report
UW-CS-TR-1346, University of Wisconsin — Madison Computer Sciences Depart-
ment (April 1997)

5. Plank, J.S., Beck, M., Kingsley, G., Li, K.: Libckpt: Transparent Checkpointing
under Unix (1995)

6. Duell, J.: The Design and Implementation of Berkeley Lab’s Linux Check-
point/Restart. Technical report, Lawrence Berkeley National Laboratory (2003)

7. Hargrove, P.H., Duell, J.C.: Berkeley Lab Checkpoint/Restart (BLCR) for Linux
Clusters. Journal of Physics: Conference Series 46(1), 494 (2006)

8. Sankaran, S., Squyres, J.M., Barrett, B., Lumsdaine, A.: The LAM/MPI Check-
point/Restart Framework: System-Initiated Checkpointing. In: Proceedings of
LACSI Symposium, Sante Fe, pp. 479-493 (2003)

9. Hursey, J., Squyres, J.M., Lumsdaine, A.: A Checkpoint and Restart Service Speci-
fication for Open MPI. Technical Report TR635, Indiana University, Bloomington,
Indiana, USA (July 2006)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Migration Techniques in HPC Environments 497

Miloji¢i¢, D.S., Douglis, F., Paindaveine, Y., Wheeler, R., Zhou, S.: Process mi-
gration. ACM Computing Surveys (CSUR) 32(3), 241-299 (2000)

Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I.,
Warfield, A.: Live Migration of Virtual Machines. In: Proceedings of the 2nd Con-
ference on Symposium on Networked Systems Design & Implementation, NSDI
2005, vol. 2 (2005)

Ranadive, A., Kesavan, M., Gavrilovska, A., Schwan, K.: Performance implications
of virtualizing multicore cluster machines. In: Proceedings of the 2nd Workshop
on System-level Virtualization for High Performance Computing, HPCVirt 2008,
pp. 1-8. ACM, New York (2008)

Birkenheuer, G., Brinkmann, A., Kaiser, J., Keller, A., Keller, M., Kleineweber, C.,
Konersmann, C., Niehérster, O., Schéfer, T., Simon, J., Wilhelm, M.: Virtualized
HPC: a contradiction in terms?. Softw., Pract. Exper. 42(4), 485-500 (2012)
Younge, A.J., Henschel, R., Brown, J.T., von Laszewski, G., Qiu, J., Fox, G.C.:
Analysis of Virtualization Technologies for High Performance Computing Environ-
ments. In: Proceedings of 2011 IEEE International Conference on Cloud Computing
(CLOUD), pp. 9-16. IEEE (2011)

Intel Virtualization Technology for Directed I/O. Technical report, Intel Corpora-
tion (2013)

Intel LAN Access Division: PCI-SIG SR-IOV Primer. Technical Report 2.5, Intel
Corporation (January 2011)

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, 1., Warfield, A.: Xen and the Art of Virtualization. SIGOPS Oper. Syst.
Rev. 37(5), 164-177 (2003)

Kivity, A., Kamay, Y., Laor, D., Lublin, U.: kvm: the Linux Virtual Machine Mon-
itor. In: Proceedings of the Linux Symposium, vol. 1, Ottawa, Ontario, Canada,
pp- 225-230 (June 2007)

Nussbaum, L., Anhalt, F., Mornard, O., Gelas, J.P.: Linux-based virtualization for
HPC clusters. In: Proceedings of the Linux Symposium (July 2009)

Uhlig, R., Neiger, G., Rodgers, D., Santoni, A.L., Martins, F.C.M., Anderson, A.V.,
Bennett, S.M., Kagi, A., Leung, F.H., Smith, L.: Intel Virtualization Technology.
Computer 38(5), 48-56 (2005)

Virtualization, A.: Secure Virtual Machine Architecture Reference Manual. AMD
Publication (2005)

Regola, N., Ducom, J.C.: Recommendations for Virtualization Technologies in High
Performance Computing. In: Proceedings of 2nd IEEE International Conference on
Cloud Computing Technology and Science (CloudCom), pp. 409416 (November
2010)

Darling, A., Carey, L., Feng, W.: The design, implementation, and evaluation of
mpiBLAST. In: Proceedings of ClusterWorld (2003)

Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, L.,
Fatoohi, R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., Simon, H.D.,
Venkatakrishnan, V., Weeratunga, S.K.: The NAS Parallel Benchmarks. Interna-
tional Journal of High Performance Computing Applications 5(3), 63-73 (1991)
Hu, W., Hicks, A., Zhang, L., Dow, E.M., Soni, V., Jiang, H., Bull, R., Matthews,
J.N.: A quantitative study of virtual machine live migration (August 2013)

	Migration Techniques in HPC Environments
	1 Introduction
	2 Process Migration in HPC Environments
	2.1 Process-Level Migration
	2.2 Virtual Machine Migration
	2.3 Container-Based Migration

	3 Evaluation
	3.1 Overhead
	3.2 Migration Time

	4 Conclusion
	References

