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Abstract. Horizontal elasticity through scale-out is the current dogma
for scaling cloud applications but requires a particular application ar-
chitecture. Vertical elasticity is transparent to applications but less used
as scale-up is limited by the size of a single physical server. In this pa-
per, we propose a novel approach, server disaggregation, that aggregates
memory, compute and I/O resources from multiple physical machines in
resource pools. From these pools, virtual machines can be seamlessly pro-
visioned with the right amount of resources for each application and more
resources can be added to vertically scale a virtual machine as needed,
regardless of the bound of any single physical machine. We present our
proposed architecture and implement key functionality such as transpar-
ent memory scale-out and cloud management integration. Our approach
is validated by a demonstration using benchmarks and a real-world big-
data application and results indicate a low overhead in using memory
scale-out in both test cases.

1 Introduction

Large peta-byte, and soon exa-byte, data collections are becoming more com-
mon [17], with data emanating from transactional enterprise applications, energy
grids, social web services, weather sensors or mobile devices. To work upon these
large data sets, large amounts of scalable computing resources are required. To-
day’s cloud is designed to provide scalability via the main two scaling methods:
horizontal and vertical elasticity. Horizontal elasticity involves allocating more
Virtual Machines, VMs, to run an application while vertical on the other hand
means adding more resources like CPU and memory to an existing VM.

Vertical elasticity is well suited to scale resource demanding business-critical
applications such as large databases, ERP systems and big data analytics. It
should therefore be a part of cloud platforms in order to enable applications and
infrastructure to work together to provide the scalability they need. However,
current virtualization technologies are ill-equipped to deliver vertical elasticity
as they were primarily built for sharing of individual servers.

In this contribution we introduce the concept of Server Disaggregation to ad-
dress these shortcomings by enabling cloud infrastructure to lift the physical
limitations traditionally associated with memory, compute and I/O resources.
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Server Disaggregation allows cloud platforms to aggregate and manipulate re-
sources more freely, for example scaling up by adding more hardware resources
to a VM, regardless of the limitations of the server where it is deployed. As
computer prices drop and performance continues to increase, low cost commod-
ity systems are the perfect fit for the Server Disaggregation approach as they
be configured in large clusters to aggregate computing power. In the paper we
present the Hecatonchire, or Heca for short, approach to Server Disaggregation
and a part-implementation of the concept, namely scale-out of memory and a
proof-of-concept integration of memory scale-out into OpenStack. We validate
our findings by means of a performance study of memory scale-out for a bench-
mark appliction and the SAP HANA in-memory database.

2 Vision and General Approach

The goal of the Heca project is to provide a true utility service by disassoci-
ating servers from their core resources and relaxing the coupling between VMs
and their physical hosts, thereby creating a radically new delivery model for
Taa$S platforms. Today, CPU development no longer follows Moores law [7] and
instead, the industry has moved towards parallelism with processors featuring
more cores. The same applies to RAM and disk where, relative to CPU perfor-
mance, disk performance has actually become slower over the past 30 years [15].
In contrast, network bandwidth continues to increase rapidly. Interfaces such
as Infiniband provide interconnect speeds that are approaching internal bus
speeds [15] and techniques like Remote Direct Memory Access, RDMA, enable
fast access to remote memory. This means that the performance overhead for
using resources on remote servers is decreasing.

In a Heca-enabled datacenter, a VM can use resources from multiple servers.
Aggregated Memory, compute, and I/O resources are made available in sepa-
rate pools from which a VM can dynamically consume the aggregated resources
to meet changes in application requirements at runtime. This effectively frees
the cloud system from some of the constraints of the underlying physical infras-
tructure and also means that larger VMs than can fit on a single server can be
provisioned.

2.1 Server Disaggregation

Server Disaggregation constitutes a major shift in the evolution of data centers
and serves as a key enabler for providing a complete scaling solution for platforms
on the cloud. Compared to traditional TaaS platforms, the technique has several
potential benefits, which we enumerate in this section.

Superior Scalability. For large memory workloads, vertical elasticity is often
the most suitable scaling approach. However, there are limits on maximum mem-
ory size for commodity hardware and typically a large memory size has to be
traded for reduced memory bandwidth, e.g., lower frequency DIMMs. Very of-
ten, an additional storage hierarchy that relies on SSDs or disks as a temporary



Hecatonchire: Towards Multi-host Virtual Machines 521

data store is introduced, with severe impact on performance. In contrast, dis-
tributed memory aggregation over high-speed interconnects across servers pro-
vides a cost-effective, high-performance, alternative as it enables applications to
leverage the memory of multiple systems. Server Disaggregation thus combines a
cost-effective virtual x86 platform running on commodity hardware with a large
shared memory thereby enabling provisioning of resource-intensive VMs.

Improved Resource Utilization. Scheduling of VMs to achieve maximum
hardware utilization is known to be an NP-hard problem [18], e.g., provision-
ing a lot of memory-bound VMs can lead to underutilized CPUs, etc. Using
resource aggregation technology, VMs can be deployed independent of single
server boundaries, to simplify scheduling and improve resource utilization. Also,
fewer but larger nodes mean reduced cluster complexity and reduced fragmenta-
tion of the resources. For example, financial organizations run up to thousands
of simulations at once, and a common deployment involves hundreds of servers,
where each node is running a simulation application at 80% utilization. By using
resource aggregation to create fewer larger nodes, every four aggregated systems
can run another copy of the application, in theory approaching 100% utilization.

Better Performance. When I/O, computing and memory resources are sepa-
rated into purpose-built nodes, servers can be better optimized to the require-
ments of the hosted applications. For compute-intense workloads, proprietary
shared-memory systems have traditionally been used. Systems such as the SGI
Ultraviolet [14] or the Cray XMT [5] come with significantly larger memory sizes
but they are comparatively expensive. Aggregation technology benefits from the
local memory bandwidth across servers, as opposed to traditional SMP [16] or, to
a lesser extent, NUMA architecture, where memory bandwidth decreases as the
machine scales out. Solutions based on resource aggregation can thus show close-
to-linear memory bandwidth scaling, thereby delivering excellent performance in
particular for many-threaded applications, e.g., graph analysis, or memory band-
width bound ones, such as computational fluid dynamics simulations.

Easier Use and Administration. Traditionally, using distributed memory
across several servers requires that the application is developed for an explicit
memory distribution model which require highly skilled, domain-aware software
developers using custom software libraries [11]. Having a single virtual system
to manage is also simpler compared to the complexities involved in managing a
cluster with respect to software installation and synchronization. Furthermore,
aggregation technology also simplifies the I/O architecture by consolidating each
individual server’s network and storage interfaces. The administrator gets fewer
I/0 devices to manage leading to increased availability, higher utilization, better
resiliency, and runtime scalability of I/O resources.

Improved Economics. Thanks to improved scalability, hardware utilization
and performance and simplified administration, aggregation technologies show
great potential for cost savings in data center operations. Server Disaggregation
also provides a cost-effective x86 alternative to expensive and proprietary shared
memory systems.
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3 Heca Architecture and Implementation

The Heca architecture, outlined in Figure 1, decouples virtual resource manage-
ment from physical resources by providing the capability to mediate between
applications and servers in real-time. This decoupling is achieved by aggregating
and managing server resources in a datacenter. Each resource type is exposed
to the overall cloud platform via an independent mediation layer that arbitrates
the allocation of resources between multiple applications, creating a distributed
and shared physical resources layer. The architecture is composed of three layers,
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Fig. 1. Traditional (left) vs Heca (right) Virtualization

the Cloud Resource Aggregation layer, marked as 1 in Figure 1, provides access
to and management for the aggregated resources, i.e. Memory Cloud, Compute
Cloud and I/0O Cloud. The Cloud Infrastructure Orchestration layer, marked as
2, provides the ability to compose logical virtual servers with a level of service
assurance that guarantees resources and performance provided by the resource
aggregation layer. It also exposes extended features enabled by the decoupled
resource layers. The Cloud Operation Orchestration layer, marked as 3, provides
service life cycle management. It enables provisioning of self-configuring, self-
healing, self-optimizing services that can be composed to create self-managed
business workflows that are independent of the physical infrastructure.

3.1 Transparent Memory Scale-out

To enable transparent memory scale-out, Heca makes it possible for a VM to allo-
cate memory on multiple servers. The server that hosts the VM to be scaled-up
is termed a memory demander. The application is transparently scaled verti-
cally by using memory provided by other hosts in the cluster, denoted memory
sponsors. Figure 2 depicts memory scale-out, with a memory demander running
an application, and several memory sponsors. The memory sponsors are VMs
whose sole purpose is to provide memory to its demanders. Note that a server
can host both memory sponsors and demanders at the same time.

All hosts run a modified Linux kernel, including a Heca kernel module, and
also include a modified version of the QEMU hypervisor. On a higher level the
kernel module fits in Layer 1 in Figure 1, while the modified hypervisor belongs
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to Layer 2 in the same figure. The kernel module handles the operations during
scale-out and the transfer of memory content to and from remote hosts. The
hypervisor enables full transparency as it communicates cluster setup to the
kernel module, and applications run unchanged on top of it. It also generates
specialized system calls, ioctls, to the kernel module, passing relevant parameters
needed to set up the memory scale-out. The behavior of the kernel module differs
between memory sponsors and demanders. On the memory demander, the VM’s
RAM is partitioned into address ranges. Each address range is registered as
sponsored by a memory sponsor. Appropriate page table entries, PTEs, are put
in place. Each memory sponsor allocates enough memory in its VM to sponsor
one address range on the memory demander. Besides that, memory sponsors can
continue to operate as usual.

Demander VM Sponsor VM

Remote Memory Remote Memory

Heca Heca
Kernel Module Kernel Module

RDMA

Fig. 2. High-level architecture of a memory scale-out

The partitioning of memory into address spaces is determined by the pa-
rameters passed to the VMs during provisioning. Therefore, when setting-up
the memory scale-out each address range is created in accordance with a cor-
responding amount of physical memory provided by a memory sponsor. When
the VM faults on an address, the kernel identifies the modified PTE and passes
execution to the kernel module. The module requests the memory page from
the memory sponsor, and the page fault is resolved. If the kernel later decides
to swap out the page, its contents are re-sent to the memory sponsor, and the
PTE is updated. Our solution achieves transparency as the application runs in a
VM, unaware of the scale-out operation. Also, application performance is good
as most memory operations are carried out in kernel space, beneath the 1/0
layer. Use of a virtual stack also enables integration with cloud platforms such
as OpenStack [12], managing a cluster of VMs. This simple approach reflects a
trade-off however, and on the downside, it binds the approach to a virtualization
stack, in our case KVM.

Resilience and Fault-Tolerance. The Heca approach can provide resilience
by preparing memory sponsors with twice the available memory, compared to
the requirements of the memory demander. Arguments are passed to the VMs
reflecting that each address space is sponsored by two memory sponsors. The
hypervisors pass that information on to the kernel module. When the kernel
module faults on an address, it sends the request to both memory sponsors,
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sponsoring its address space. The first arriving response is used. When the kernel
module swaps a page out, it sends it to both memory sponsors, and waits for
validation that both of them stored the content, before discarding the page.
The biggest advantage of this approach is zero-downtime failover of memory
sponsors. If one sponsor fails, the other sponsor continues responding to the
memory demander’s requests for memory content. Furthermore, the memory
demander can identify the fault (trusting the remote kernel module, and the
underlying networking fabric), and disconnect from the sponsor. Another host
can later join the system, taking up the role of the failed sponsor.

However, there are a few disadvantages with this approach. First of all, it con-
sumes twice the amount of memory, compared to a non-resilient scheme. Our
mirroring approach also doubles the required bandwidth, an increase that pre-
vious generations of networking fabrics could not support [8]. However, today’s
fabrics can handle much higher loads. With bandwidths exceeding 100 Gb/s this
would require the application to be very memory intensive, swapping more than
50 Gb/s, yet it is theoretically possible. In this context we highlight that even
the most memory-intensive applications are practically bound by memory bus
capacities. Infiniband capacities have rapidly multiplied in the last decade, while
the maximum memory bandwidth for Intel Xeon server series chipsets have only
increased by a factor of 8 over this period, from 6.4 Gbps to 51.2 Gbps [4]. If
this trend persists, the potential bottleneck might be further mitigated and even
eliminated in most practical scenarios.

Other resiliency approaches, such as RAID-5, are more conservative in mem-
ory and bandwidth requirements. Yet such approaches require a lengthy compu-
tation process to recover from a fault, in which lost data is re-built. This prevents
them from ensuring zero-downtime failover. Additionally, such approaches may
incur a performance penalty on the scale-out operation, as computation of parity
bits is required when swapping pages out.

We highlight that this discussion does not deal with fault tolerance for the
main host running the application, the memory demander. This issue is beyond
the scope of this paper, as it is not a scale-out challenge, but rather a generic
challenge of fault tolerance for VMs.

3.2 Cloud Management Integration

To simplify the use of memory scale-out we have integrated resource disaggre-
gation of VMs into OpenStack. If the VM is too large to fit on any host, our
modified OpenStack scheduler splits the VM into sponsors and a demander. The
feature is enabled by setting a flag in an OpenStack VM flavor.

The launch of a VM instance in OpenStack starts with the cloud controller
receiving a request to deploy an instance via the Compute API (Step 1 in Fig-
ure 3). The instance is given an instance ID and the message is forwarded to
the scheduler which selects a suitable worker to run the instance (Steps 2 and
3) and passes the message to it (Step 4). The compute worker sends a message
to the network controller to get an IP for the instance (Steps 5-8) and continues
provisioning of the instance.
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To provision the VMs correctly as demander and sponsors, extra information
must be passed to the hypervisor. These parameters include a heca mode, sponsor
or demander, two heca process identifiers, TCP ports for control and memory
transfer, and RDMA IP addresses for both demander and sponsors. The start
address and size of the shared memory region is also needed and is given by how
much more memory the VM requests than maximum free on any host. Figure 3
illustrates how OpenStack allocates the instance before it is sent to the scheduler,
which also performs the actual deployment in an asynchronous manner. This
creates an issue as the sponsor and demander both need each others RDMA TP
addresses at the time of creation. Our pragmatic solution is to perform a ”pre-
scheduling” round to determine the placement of the VMs without actually
provisioning them. The instances are then sent to the scheduler again, using
scheduler hints to achieve the desired placement. To pass these parameters to
gemu-kvm our modified OpenStack constructs a <qemu:commandline> block
that is added to the instance.xml file. On instance creation, instance.xml is fed
to the libvirt API that passes the Heca parameters to the gemu-kvm hypervisor.

4 Experimental Demonstration of Heca functionality

To verify the memory scale-out functionality we deploy an 8 GB VM to an
OpenStack cloud with a controller node and three compute nodes, see Table 1.
We present performance results for two deployments, with and without memory
scale-out enabled. The outcome of the two deployments are shown in Figure 4.

Table 1. Testbed Description.

Node CPU RAM Free RAM Network Kernel
Controller i5@3 GHz 4 GB N/A Gb Ethernet Linux Heca 3.6
Compute A,B,C i5@3 GHz 8 GB 4,3,5 GB iWARP Linux Heca 3.6

In the first deployment, the VM is provisioned on the host with the most amount
of RAM available. As overbooking of resources is enabled in OpenStack, virtual
memory is used to account for the overbooked RAM. In the second deployment,
the modified OpenStack avoids using virtual memory by memory scale-out and
provisions the memory demander on Node B and a memory sponsor on Node A.

Deployment 1: Heca=disabled
Node A Node B Node C
3 4 Compute VM
5 Node
2
8
Deployment 2: Heca=enabled
6
1 Controller ——{ Network [__NodeA___{__|__NodeB __ Node C
—| Compute APl —— “\ode le— | Controller i |—SponT| rmﬂ i
7 ' VM M I
|

Fig. 3. OpenStack deployment Fig. 4. Deployment outcome
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Remote Memory Performance. To evaluate the relative performance of us-
ing remote memory we made four comparisons using the Linux MBW [9] tool
that allocates two arrays and copies the first to the second using memcopy. We
ran MBW with an array size of 3 GB which means it allocated 6 GB of RAM.
In Figure 5, for the baseline case, marked as bare-metal, MBW was run non-
virtualized with more than 6 GB of free RAM. In the second case, virtualized in
Figure 5, MBW was run in an 8 GB VM, with more than 6 GB of free RAM.
For the third experiment, overcommitted in the same figure, the second exper-
iment was repeated but the amount of free memory on the host was restricted
to 4 GB meaning that the host is overcommitted. In the fourth experiment,
marked as memory scale-out, MBW was run on a demander-sponsor VM pair
with 2 GB scaled out to the sponsor. All other conditions were identical to the
overcommitted case. An overall observation is that virtualized is 6% slower than
bare-metal and memory scale-out is 6% slower than virtualized. The results of
the overcommitted case vary greatly between iterations due to swapping.

To further evaluate the memory scale-out functionality we performed an ex-
periment with a real-world, big data application, SAP HANA [13], which is an
in-memory database. The application was run on a 40 vCPU VM on a 4 socket,
10 core Intel Xeon West Mere cluster with 1 TB RAM, connected by a 40 Gbps
Infiniband network. The experiment was performed with a set of 18 different
queries against a 2.5 TB OLAP dataset. Between tests, we varied the number
of simultaneous users running the query sets. The complete test was performed
twice, the second time 512 GB of the VMs RAM was scaled out to a memory
sponsor. The results are shown in Figure 6. In all runs, the overhead in query
response time with 50% remote memory was around 3% compared to running
virtualized with no remote memory.

1600 N N N N 500,00
1400 4 450,00
1200 T \ A A =#=Virtualized % ey
£ 35000
S0 & —— § 300,00
< ~#=Overcommitted K
g 0 v £ 2000 = Virtualized
& 600 Memory & 200,00
scaleout > 150,00 ® Memory
400, ——Bare-metal :’; 100,00 scaleout
o 50,00 .
0 i " T 0,00 e v
1 2 3 £ 5 B 7 B 5 10 i 20 40 60
Iteration No of users
Fig. 5. Memcopy speed test results Fig. 6. Overhead per query set

Table 2. Overhead per query set with 80 HANA users

Demander : Sponsor A : Sponsor B Overhead

1GB:2GB:- 4%
1GB:3GB: - 5.6%
2GB:1GB:1GB 0.9%

1GB:1GB:1GB 2%
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To investigate the overhead when using remote memory in more detail, we
present the result from a test running HANA on a smaller VM, this time with 80
users but varying the amount of remote memory. We ran the experiment with one
and two sponsors, varying the distribution of memory between the demander and
sponsors as shown in Table 2. The table also shows that the overhead increases
with the amount of remote memory and that distributing the remote memory
over several sponsors improves performance, due to the increased bandwidth.

5 Related Work

Han et al. advocate a datacenter architecture in which the resources within
a server are disaggregated and the datacenter is architected as a collection of
standalone resources [3]. However, they do not implement anything but rather
investigate the feasibility of such an approach.

The Oracle Transcendent Memory project makes unused memory on a node
available to other nodes through the use of an API [6]. The main difference from
Heca is that guest OS changes are explicitly required in order to use the shared
memory using the Oracle approach. Also, there is no guarantee that memory that
is currently idle will not eventually be needed as the future working set size of a
VM cannot be accurately predicted. Another similar approach is VMware DRS
which enables managing a cluster containing many potentially-heterogeneous
hosts as if it were a single pool of resources [2]. The main difference between
the DRS and the Heca approaches is that the DRS approach splits a cluster
into smaller groups. A number of VMs attached to a group can then share the
CPU and Memory resources in the group among them. Dragojevic et al. propose
their Fast Remote Memory, FaRM, approach which exposes remote memory over
RDMA as a shared address space [1], consisting of 2 GB memory regions. In
contrast to Heca, the FaRM approach does not use a virtualization stack, but
the shared memory is made available trough a programming model.

Sharing of resources is also provided by XtreemOS, which is a distributed
Linux distribution that aggregates resources from compute resources in a clus-
ter [10]. However, as the system is perceived as one single computer this approach
can be cumbersome when running many applications in parallel. This means that
XtreemOS is more suited for the Grid use-case.

6 Conclusion

We propose a solution to enable vertical elasticity, beyond the capacity limita-
tions of individual servers, by aggregating CPU, memory, and I/O resources into
reusable pools that can be used to provision VMs independent of limitations of
the underlying hardware. The core concepts of our outlined architecture is im-
plemented as a kernel module and a modified Qemu-KVM hypervisor integrated
into OpenStack. Our approach is validated by provisioning multi-host VMs and
a performing an evaluation of memory scale-out. The results indicate that our
server disaggregation concept is feasible, with as little as 6% overhead compared
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to single-host virtualization as well as simplified administration, thus enabling a
broader range of applications to take advantage of the cloud.
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