Skip to main content

A Practical Approach to Big Data in Tourism: A Low Cost Raspberry Pi Cluster

  • Conference paper
  • First Online:
Information and Communication Technologies in Tourism 2015

Abstract

Big Data is the contemporary hype. However, not many companies or organisations have the resources or the capabilities to collect the huge amounts of data needed for a significant and reliable analysis. The recent introduction of the Raspberry Pi, a low-cost, low-power single-board computer gives an affordable alternative to traditional workstations for a task that requires little computing power but immobilises a machine for long elapsed times. Here we present a flexible solution, devised for small and medium sized organisations based on the Raspberry Pi hardware and open source software which can be employed with relatively little effort by companies and organisations for their specific objectives. A cluster of six machines has been put together and successfully used for accessing and downloading the data available on a number of social media platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bedeley, R., & Nemati, H. (2014). Big data analytics: A key capability for competitive advantage. Paper presented at the 20th Americas Conference on Information Systems (AMCIS). Savannah, GA, August 7–9, 2014.

    Google Scholar 

  • Bird, S., Loper, E., & Klein, E. (2009). Natural language processing with python. Sebastopol, CA: O’Reilly Media.

    Google Scholar 

  • Bonchi, F., Castillo, C., Gionis, A., & Jaimes, A. (2011). Social network analysis and mining for business applications. ACM Transactions on Intelligent Systems and Technology, 2(3), art.22.

    Article  Google Scholar 

  • Boyd, D., & Crawford, K. (2012). Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon. Information, Communication and Society, 15(5), 662–679.

    Article  Google Scholar 

  • Cai, X., Langtangen, H. P., & Moe, H. (2005). On the performance of the Python programming language for serial and parallel scientific computations. Scientific Programming, 13(1), 31–56.

    Article  Google Scholar 

  • Cambria, E., Rajagopal, D., Olsher, D., & Das, D. (2013). Big social data analysis. In R. Akerkar (Ed.), Big data computing (pp. 401–414). Boca Raton, FL: Chapman and Hall/CRC.

    Chapter  Google Scholar 

  • Fan, J., Han, F., & Liu, H. (2014). Challenges of big data analysis. National Science Review, 1(2), 293–314.

    Article  Google Scholar 

  • Granville, V. (2013). The curse of big data. Retrieved June, 2014, from http://www.analyticbridge.com/profiles/blogs/the-curse-of-big-data

  • Hansen, D., Shneiderman, B., & Smith, M. A. (2010). Analyzing social media networks with NodeXL: Insights from a connected world. Burlington, MA: Morgan Kaufmann.

    Google Scholar 

  • Hays, S., Page, S. J., & Buhalis, D. (2013). Social media as a destination marketing tool: Its use by national tourism organisations. Current Issues in Tourism, 16(3), 211–239.

    Article  Google Scholar 

  • Heerschap, N., Ortega, S., Priem, A., & Offermans, M. (2014). Innovation of tourism statistics through the use of new big data sources. Paper presented at the 12th Global Forum on Tourism Statistics, Prague, CZ, May 15–16, 2014. Retrieved July, 2014 from http://www.tsf2014prague.cz/assets/downloads/Paper%201.2_Nicolaes%20Heerschap_NL.pdf

  • Jungherr, A., & JĂ¼rgens, P. (2013). Forecasting the pulse. How deviations from regular patterns in online data can identify offline phenomena. Internet Research, 23(5), 589–607.

    Article  Google Scholar 

  • Ko, H. G., Ko, I. Y., Kim, T., Lee, D., & Hyun, S. J. (2013). Identifying user interests from online social networks by using semantic clusters generated from linked data. In Q. Z. Sheng & J. Kjeldskov (Eds.), Current trends in web engineering (pp. 302–309). Berlin: Springer.

    Chapter  Google Scholar 

  • Lazer, D. M., Kennedy, R., King, G., & Vespignani, A. (2014). The parable of Google flu: Traps in big data analysis. Science, 343(14), 1203–1205.

    Article  Google Scholar 

  • Leung, D., Law, R., van Hoof, H., & Buhalis, D. (2013). Social media in tourism and hospitality: A literature review. Journal of Travel & Tourism Marketing, 30(1–2), 3–22.

    Article  Google Scholar 

  • Mayer-Schönberger, V., & Cukier, K. (2013). Big data: A revolution that will transform how we live, work, and think. New York: Houghton Mifflin Harcourt.

    Google Scholar 

  • McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D. J., & Barton, D. (2012). Big data: The management revolution. Harvard Business Review, 90(10), 61–67.

    Google Scholar 

  • Russell, M. A. (2013). Mining the social Web: Data mining Facebook, Twitter, LinkedIn, Google+, GitHub, and more. Sebastopol, CA: O’Reilly Media.

    Google Scholar 

  • Severance, C. (2013). Eben Upton: Raspberry Pi. Computer, 46(10), 14–16.

    Article  Google Scholar 

  • Tso, F. P., White, D. R., Jouet, S., Singer, J., & Pezaros, D. P. (2013). The Glasgow Raspberry Pi Cloud: A scale model for cloud computing infrastructures. In Proceedings of the IEEE 33rd international conference on distributed computing systems workshops (ICDCSW), Philadelphia, PA, 8–11 July, pp. 108–112.

    Google Scholar 

  • Upton, E., & Halfacree, G. (2013). Raspberry Pi user guide. Chichester, UK: Wiley.

    Google Scholar 

  • Wood, S. A., Guerry, A. D., Silver, J. M., & Lacayo, M. (2013). Using social media to quantify nature-based tourism and recreation. Scientific Reports, 3, art.2976.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the staff of the CERMES Center and of the Bocconi IT services for their help and support during the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano d’Amore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

d’Amore, M., Baggio, R., Valdani, E. (2015). A Practical Approach to Big Data in Tourism: A Low Cost Raspberry Pi Cluster. In: Tussyadiah, I., Inversini, A. (eds) Information and Communication Technologies in Tourism 2015. Springer, Cham. https://doi.org/10.1007/978-3-319-14343-9_13

Download citation

Publish with us

Policies and ethics