Skip to main content

A Visual Analysis of Social Influencers and Influence in the Tourism Domain

  • Conference paper
  • First Online:
Information and Communication Technologies in Tourism 2015

Abstract

Identifying influencers is an important step towards understanding how information spreads within a network. In social media, hub nodes are generally considered as social influencers. Social networks follow a power-law degree distribution of nodes, with a few hub nodes and a long tail of peripheral nodes. While there exist consolidated approaches supporting the identification and characterization of hub nodes, research on the analysis of the multi-layered distribution of peripheral nodes is limited. However, influence seems to spread following multi-hop paths across nodes in peripheral network layers. This paper proposes a visual approach to the graphical representation and exploration of peripheral layers by exploiting the theory of k-shell decomposition analysis. We put forward three hypotheses that allow the graphical identification of peripheral nodes that are more likely to be influential and contribute to the spread of information. Hypotheses are tested on a large sample of tweets from the tourism domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Further visualizations can be accessed online from: http://goo.gl/FmyWTq

References

  • Abello, J., & Queyroi, F. (2013). Fixed points of graph peeling. Paper presented at the Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining.

    Google Scholar 

  • Alvarez-Hamelin, J. I., Dall’Asta, L., Barrat, A., & Vespignani, A. (2006). Large scale networks fingerprinting and visualization using the k-core decomposition. Advances in Neural Information Processing Systems, 18, 41.

    Google Scholar 

  • Andersen, R., Chung, F., & Lu, L. (2007). Drawing power law graphs using a local global decomposition. Algorithmica, 47(4), 397.

    Article  Google Scholar 

  • Andersen, R., Chung, F., & Lu, L. (2004). Drawing power law graphs using local/global decomposition. In Twelfth annual symposium on graph drawing.

    Google Scholar 

  • Anholt, S. (2006). Competitive identity: The new brand management for nations, cities and region. Basingstoke: Palgrave Macmillan.

    Book  Google Scholar 

  • Arbuckle, J. L. (2011). IBM SPSS Amos 20 user’s guide. Amos Development Corporation, SPSS Inc.

    Google Scholar 

  • Asur, S., Huberman, B. A., Szabo, G., & Wang, C. (2011). Trends in social media: Persistence and decay. Paper presented at the ICWSM.

    Google Scholar 

  • Bagozzi, R. P., & Fornell, C. (1982). Theoretical concepts, measurements, and meaning. A Second Generation of Multivariate Analysis, 2(2), 5–23.

    Google Scholar 

  • Bakshy, E., Hofman, J. M., Mason, W. A., & Watts, D. J. (2011). Everyone’s an influencer: Quantifying influence on Twitter. Paper presented at the Proceedings of the fourth ACM International Conference on Web Search and Data Mining.

    Google Scholar 

  • Barbagallo, D., Bruni, L., Francalanci, C., & Giacomazzi, P. (2012). An empirical study on the relationship between twitter sentiment and influence in the tourism domain. In M. Fuchs, F. Ricci, & L. Cantoni (Eds.), Information and Communication Technologies in Tourism 2012 (pp. 506–516). Helsingborg: Springer.

    Chapter  Google Scholar 

  • Benevenuto, F., Cha, M., Gummadi, K. P., & Haddadi, H. (2010). Measuring user influence in twitter: The million follower fallacy. Paper presented at the International AAAI Conference on Weblogs and Social (ICWSM10).

    Google Scholar 

  • Bigonha, C., Cardoso, T. N. C., Moro, M. M., Gonçalves, M. A., & Almeida, V. A. F. (2012). Sentiment-based influence detection on Twitter. Journal of the Brazilian Computer Society, 18(3), 169–183.

    Article  Google Scholar 

  • Boutin, F., Thievre, J., & Hascoët, M. (2006). Focus-based filtering + clustering technique for power-law networks with small world phenomenon. In: R. F. Erbacher, J. C. Roberts, M. T. Gröhn, K. Börner (Eds.), Electronic imaging 2006 (pp. 60600Q–60600Q). International Society for Optics and Photonics.

    Google Scholar 

  • Boyd, D., Golde, S., & Lotan, G. (2010). Tweet, tweet, retweet: Conversational aspects of retweeting on Twitter. IEEE, 1–10.

    Google Scholar 

  • Bruni, L., Francalanci, C., Giacomazzi, P., Merlo, F., & Poli, A. (2013). The relationship among volumes, specificity, and influence of social media information. Paper presented at the Proceedings of International Conference on Information Systems.

    Google Scholar 

  • Carmi, S., Havlin, S., Kirkpatrick, S., Shavitt, Y., & Shir, E. (2007). A model of Internet topology using k-shell decomposition. Proceedings of the National Academy of Sciences of the United States of America, 104(27), 11150–11154.

    Article  Google Scholar 

  • Cha, M., Haddadi, H., Benevenuto, F., & Gummadi, P. K. (2010). Measuring user influence in twitter: The million follower fallacy. International Conference on Web and Social Media, 10, 10–17.

    Google Scholar 

  • Chan, D. M., Chua, K. S., Leckie, C., & Parhar, A. (2003). Visualisation of power-law network topologies. Paper presented at the Networks, 2003. ICON2003. The 11th IEEE International Conference on (pp. 69–74). IEEE.

    Google Scholar 

  • Chen, C. (2006). Information visualization: Beyond the horizon. New York, NY: Springer.

    Google Scholar 

  • Fan, W., & Gordon, M. D. (2014). The power of social media analytics. Communications of the ACM, 57(6), 74–81.

    Article  Google Scholar 

  • Francalanci, C., & Hussain, A. (2014). A visual approach to the empirical analysis of social influence. Paper presented at the DATA 2014—Proceedings of 3rd International Conference on Data Management Technologies and Applications. doi:10.5220/0004992803190330

  • Fruchterman, T. M. J., & Reingold, E. M. (1991). Graph drawing by force-directed placement. Software: Practice and Experience, 21(11), 1129–1164.

    Google Scholar 

  • Hossain, L., Wu, A., & Chung, K. K. (2006). Actor centrality correlates to project based coordination. Paper presented at the Proceedings of the 2006 20th Anniversary Conference on Computer Supported Cooperative Work (pp. 363–372). New York, NY: ACM.

    Google Scholar 

  • Hussain, A., Latif, K., Rextin, A., Hayat, A., & Alam, M. (2014). Scalable visualization of semantic nets using power-law graphs. Applied Mathematics & Information Sciences, 8(1), 355–367.

    Article  Google Scholar 

  • Hutto, C. J., Yardi, S., & Gilbert, E. (2013). A longitudinal study of follow predictors on twitter. Paper presented at the Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.

    Google Scholar 

  • Kitsak, M., Gallos, L. K., Havlin, S., et al. (2010). Identification of influential spreaders in complex networks. Nature Physics, 6(11), 888–893.

    Article  Google Scholar 

  • Klotz, C., Ross, A., Clark, E., & Martell, C. (2014). Tweet!—And I can tell how many followers you have. In Recent Advances in Information and Communication Technology (pp. 245–253). Berlin: Springer.

    Google Scholar 

  • Koch, R. (1999). The 80/20 principle: The secret to achieving more with less. New York, NY: Crown Business.

    Google Scholar 

  • Kwak, H., Lee, C., Park, H., & Moon, S. (2010). What is Twitter, a social network or a news media? Paper presented at the Proceedings of the 19th International Conference on World Wide Web.

    Google Scholar 

  • Leavitt, A., Burchard, E., Fisher, D., & Gilbert, S. (2009). The influentials: New approaches for analyzing influence on Twitter. Web Ecology Project, 4(2), 1–18.

    Google Scholar 

  • Li, J., Peng, W., Li, T., Sun, T., Li, Q., & Xu, J. (2014). Social network user influence sense-making and dynamics prediction. Expert Systems with Applications, 41(11), 5115–5124.

    Article  Google Scholar 

  • Meraz, S. (2009). Is there an elite hold? Traditional media to social media agenda setting influence in blog networks. Journal of Computer-Mediated Communication, 14(3), 682–707.

    Article  Google Scholar 

  • Messias, J., Schmidt, L., Oliveira, R., & Benevenuto, F. (2013). You followed my bot! Transforming robots into influential users in Twitter. First Monday, 18(7).

    Google Scholar 

  • Metra, I. (2014). Influence based exploration of Twitter social network. Milan, Italy: Politecnico di Milano.

    Google Scholar 

  • Myers, S. A., & Leskovec, J. (2014). The bursty dynamics of the Twitter information network. Paper presented at the Proceedings of the 23rd International Conference on World Wide Web.

    Google Scholar 

  • Naaman, M., Boase, J., & Lai, C.-H. (2010). Is it really about me?: Message content in social awareness streams. Paper presented at the Proceedings of the 2010 ACM Conference on Computer Supported Cooperative Work, Savannah, GA.

    Google Scholar 

  • Pallant, J. (2010). SPSS survival manual: A step by step guide to data analysis using SPSS. New York, NY: McGraw-Hill.

    Google Scholar 

  • Perline, R. (2005). Strong, weak and false inverse power laws. Statistical Science, 20(1), 68–88.

    Article  Google Scholar 

  • Ren, Z.-M., Zeng, A., Chen, D.-B., Liao, H., & Liu, J.-G. (2014). Iterative resource allocation for ranking spreaders in complex networks. Europhysics Letters, 106(4), 48005.

    Article  Google Scholar 

  • Sparrowe, R. T., Liden, R. C., Wayne, S. J., & Kraimer, M. L. (2001). Social networks and the performance of individuals and groups. Academy of Management Journal, 44(2), 316–325.

    Article  Google Scholar 

  • Xu, X., Yuruk, N., Feng, Z., & Schweiger, T. A. J. (2007). Scan: A structural clustering algorithm for networks. Paper presented at the Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Francalanci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Francalanci, C., Hussain, A. (2015). A Visual Analysis of Social Influencers and Influence in the Tourism Domain. In: Tussyadiah, I., Inversini, A. (eds) Information and Communication Technologies in Tourism 2015. Springer, Cham. https://doi.org/10.1007/978-3-319-14343-9_2

Download citation

Publish with us

Policies and ethics