Skip to main content

Behaviour of Virtual Visitor Based on E-Shop and DMO Websites: A Comparative Study by Means of Data Mining Techniques

  • Conference paper
  • First Online:
Information and Communication Technologies in Tourism 2015

Abstract

Meeting the needs of virtual visitors is important to engage them. So far literature has helped assessing website’s efficiency and making it adaptive. However, virtual visitor’s navigation behaviour and web topology duality makes this a challenging task. Few studies have gone in depth on Destination Management Organization websites. This paper performs a comparative study by means of clustering techniques looking for understanding the difference between an E-Shop’s and DMO’s virtual visitors’ behaviour through their digital footprint. Once the visitors have been clustered and the observations classified, a comparative analysis by website is performed on the visitors’ distribution within the clusters. Results established that users’ features differ from website to website and can be clearly distributed. As a result, a holistic view of virtual visitors’ habits will be available for tourism stakeholders. This will allow to adapt the websites to virtual visitors’ needs better.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.spain.info/

  2. 2.

    http://www.webtenerife.com/

  3. 3.

    http://www.barcelonaturisme.com/

  4. 4.

    http://www.iamsterdam.com/

  5. 5.

    http://www.visitlondon.com/es

References

  • Alzua-Sorzabal, A., Gerrikagoitia, J. K., & Rebón, F. (2014). Using MWD: A business intelligence system for tourism destination web. Management, 2(1), 62–72.

    Google Scholar 

  • Arbelaitz, O., Gurrutxaga, I., Lojo, A., Muguerza, J., Pérez, J. M., & Perona, I. (2013). Web usage and content mining to extract knowledge for modelling the users of the Bidasoa Turismo website and to adapt it. Expert Systems with Applications, 40(18), 7478–7491.

    Article  Google Scholar 

  • Calinski, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics-Theory and Methods, 3(1), 1–27.

    Article  Google Scholar 

  • Castellano, G., & Torsello, M. A. (2009). How to derive fuzzy user categories for web personalization. In G. Castellano, L. C. Jain, & A. M. Fanelli (Eds.), Web personalization in intelligent environments (pp. 65–79). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Chen, L., & Su, Q. (2013). Discovering user’s interest at E-commerce site using clickstream data. In Service systems and service management (ICSSSM), 2013 10th international conference on (pp. 124–129). doi:10.1109/ICSSSM.2013.6602631

  • Conti, M., Das, S. K., Bisdikian, C., Kumar, M., Ni, L. M., Passarella, A., et al. (2012). Looking ahead in pervasive computing: Challenges and opportunities in the era of cyber—physical convergence. Pervasive and Mobile Computing, 8(1), 2–21.

    Article  Google Scholar 

  • Gassman, B. (2008). Introduction to the Gartner maturity model for web analytics. Gartner Group. Retrieved from, https://www.gartner.com/doc/713211/overview-introduction-gartner-maturity-model

  • Gretzel, U., Fesenmaier, D. R., Formica, S., & O’Leary, J. T. (2006). Searching for the future: Challenges faced by destination marketing organizations. Journal of Travel Research, 45(2), 116–126.

    Article  Google Scholar 

  • Han, J., Kamber, M., & Pei, J. (2006). Data mining: Concepts and techniques (The Morgan Kaufmann series in data management systems). Philadelphia, PA: Elsevier.

    Google Scholar 

  • Han, W., Nan-Feng, X., & Qiong, C. (2009). Web snippets clustering based on an improved suffix tree algorithm. In Sixth international conference on Fuzzy systems and knowledge discovery, 2009. FSKD’09. (Vol. 1, pp. 542–547).

    Google Scholar 

  • Ihaka, R. (2009). R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5(3), 299–314.

    Google Scholar 

  • Iváncsy, R., & Vajk, I. (2006). Frequent pattern mining in web log data. Acta Polytechnica Hungarica, 3(1), 77–90.

    Google Scholar 

  • Koubâa, A., & Andersson, B. (2009, July). A vision of cyber-physical internet. In Proceedings of the workshop of real-time networks (RTN 2009), satellite workshop to (ECRTS 2009).

    Google Scholar 

  • Lee, H. Y., Qu, H., & Kim, Y. S. (2007). A study of the impact of personal innovativeness on online travel shopping behavior-A case study of Korean travelers. Tourism Management, 28(3), 886–897.

    Article  Google Scholar 

  • Leouski, A. V., & Croft, W. B. (2005). An evaluation of techniques for clustering search results. Amherst, MA: University of Massachusetts. Technical Report IR-76.

    Google Scholar 

  • Ocaña, A. M., Martos, I. O., & Vicente, E. F. (2002). Reconocimiento de Formas en Imágenes Turísticas Mediante Técnicas de Aprendizaje no Supervisado. In IV Congreso Turismo y Tecnologías de la Información y las Comunicaciones. TuriTec 2002 (pp. 289–315).

    Google Scholar 

  • Piazzi, R., Baggio, R., Neidhardt, J., & Werthner, H. (2011). Destinations and the web: A network analysis view. Information Technology & Tourism, 13(3), 215–228.

    Article  Google Scholar 

  • Srivastava, T., Desikan, P., & Kumar, V. (2005). Web mining—Concepts, applications and research directions. In W. Chu & T. Y. Lin (Eds.) Foundations and advances in data mining (pp. 275–307). Berlin: Springer.

    Google Scholar 

  • Wang, Y., & Fesenmaier, D. R. (2006). Identifying the success factors of web-based marketing strategy: An investigation of convention and visitors bureaus in the United States. Journal of Travel Research, 44(3), 239–249.

    Article  Google Scholar 

  • Xiang, Z., & Gretzel, U. (2010). Role of social media in online travel information search. Tourism Management, 31(2), 179–188.

    Article  Google Scholar 

  • Zamir, O., & Etzioni, O. (1998). Web document clustering: A feasibility demonstration. In Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval (pp. 46–54).

    Google Scholar 

  • Zeng, H.-J., He, Q.-C., Chen, Z., Ma, W.-Y., & Ma, J. (2004). Learning to cluster web search results. In Proceedings of the 27th annual international ACM SIGIR conference on research and development in information retrieval (pp. 210–217).

    Google Scholar 

  • Zhang, Y., & Feng, B. (2008). A co-occurrence based hierarchical method for clustering web search results. In IEEE/WIC/ACM International Conference on Web intelligence and intelligent agent technology, 2008. WI-IAT’08 (Vol. 1, pp. 407–410). doi:10.1109/WIIAT.2008.35

Download references

Acknowledgements

The authors would like to thank the managers of Basque Tourism Agency (BASQUETOUR) and Computer Society of Basque Government (EJIE) for their excellent cooperation and Basque Government for its ETORTEK program. Authors’ appreciation is also expressed to the managers of Atlas Stoked for the cession of the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fidel Rebón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Rebón, F., Ocáriz, G., Argandoña, J., Gerrikagoitia, J.K., Alzua-Sorzabal, A. (2015). Behaviour of Virtual Visitor Based on E-Shop and DMO Websites: A Comparative Study by Means of Data Mining Techniques. In: Tussyadiah, I., Inversini, A. (eds) Information and Communication Technologies in Tourism 2015. Springer, Cham. https://doi.org/10.1007/978-3-319-14343-9_8

Download citation

Publish with us

Policies and ethics