Abstract
Facial expressions depend greatly on facial morphology and expressiveness of the observed person. Recent studies have shown great improvement of the personalized over non-personalized models in variety of facial expression related tasks, such as face and emotion recognition. However, in the context of facial action unit (AU) intensity estimation, personalized modeling has been scarcely investigated. In this paper, we propose a two-step approach for personalized modeling of facial AU intensity from spontaneously displayed facial expressions. In the first step, we perform facial feature decomposition using the proposed matrix decomposition algorithm that separates the person’s identity from facial expression. These two are then jointly modeled using the framework of Conditional Ordinal Random Fields, resulting in a personalized model for intensity estimation of AUs. Our experimental results show that the proposed personalized model largely outperforms non-personalized models for intensity estimation of AUs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Pantic, M.: Machine analysis of facial behaviour: Naturalistic and dynamic behaviour. Philosophical Transactions of Royal Society B 364, 3505–3513 (2009)
Ekman, P., Friesen, W., Hager, J.: Facial Action Coding System (FACS): Manual. A Human Face (2002)
Mahoor, M., Cadavid, S., Messinger, D., Cohn, J.: A framework for automated measurement of the intensity of non-posed facial action units. In: IEEE CVPR’W, pp. 74–80 (2009)
Vasilescu, M.A.O., Terzopoulos, D.: Multilinear subspace analysis of image ensembles. In: CVPR. vol. 2, p. II-93 (2003)
Mpiperis, I., Malassiotis, S., Strintzis, M.G.: Bilinear models for 3-d face and facial expression recognition. IEEE Trans. on Information Forensics and Security 3, 498–511 (2008)
Valstar, M.F., Pantic, M.: Fully automatic recognition of the temporal phases of facial actions. Systems, Man, and Cybernetics, Part B 42, 28–43 (2012)
Kim, M., Pavlovic, V.: Structured output ordinal regression for dynamic facial emotion intensity prediction. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 649–662. Springer, Heidelberg (2010)
Hablani, R., Chaudhari, N., Tanwani, S.: Recognition of facial expressions using local binary patterns of important facial parts. Int. Journal of Image Proc. 7, 163 (2013)
Arapakis, I., Athanasakos, K., Jose, J.M.: A comparison of general vs personalised affective models for the prediction of topical relevance. In: Proc. of the 33rd Int. ACM SIGIR Conf. on R&D in Information Retrieval, pp. 371–378 (2010)
Dahmane, M., Meunier, J.: Individual feature–appearance for facial action recognition. In: Kamel, M., Campilho, A. (eds.) ICIAR 2011, Part II. LNCS, vol. 6754, pp. 233–242. Springer, Heidelberg (2011)
Doulamis, N.: An adaptable emotionally rich pervasive computing system. In: European Signal Processing Conference (EUSIPCO) (2006)
Romera-Paredes, B., Aung, M.S., Pontil, M., Bianchi-Berthouze, N., de C Williams, A., Watson, P.: Transfer learning to account for idiosyncrasy in face and body expressions. In: FG, pp. 1–6 (2013)
Chen, J., Liu, X., Tu, P., Aragones, A.: Learning person-specific models for facial expression and action unit recognition. Pattern Recognition Letters 34, 1964–1970 (2013)
Romera-Paredes, B., Argyriou, A., Berthouze, N., Pontil, M.: Exploiting unrelated tasks in multi-task learning. In: Int. Conf. on Artificial Intelligence and Statistics, pp. 951–959 (2012)
Rudovic, O., Pavlovic, V., Pantic, M.: Context-sensitive Dynamic Ordinal Regression for Intensity Estimation of Facial Action Units. IEEE TPAMI (in press, 2014)
Chu, W.S., Torre, F.D.L., Cohn, J.F.: Selective transfer machine for personalized facial action unit detection. In: CVPR, pp. 3515–3522 (2013)
Reilly, J., Ghent, J., McDonald, J.: Investigating the dynamics of facial expression. In: Bebis, G., et al. (eds.) ISVC 2006. LNCS, vol. 4292, pp. 334–343. Springer, Heidelberg (2006)
Savrana, A., Sankur, B., Bilgeb, M.: Regression-based intensity estimation of facial action units. In: Image and Vision Computing (2012)
Vasilescu, M.A.O., Terzopoulos, D.: Multilinear image analysis for facial recognition. In: ICPR, vol. 2, p. 20511 (2002)
Wang, H., Ahuja, N.: Facial expression decomposition. In: ICCV, pp. 958–965 (2003)
Lee, C.-S., Elgammal, A.: Facial expression analysis using nonlinear decomposable generative models. In: Zhao, W., Gong, S., Tang, X. (eds.) AMFG 2005. LNCS, vol. 3723, pp. 17–31. Springer, Heidelberg (2005)
Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3, 71–86 (1991)
Li, P., Fu, Y., Mohammed, U., Elder, J., Prince, S.: Probabilistic models for inference about identity. TPAMI 34, 144–157 (2012)
Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: ICML, pp. 282–289 (2001)
Winkelmann, R., Boes, S.: Analysis of microdata. Springer (2006)
Mavadati, S., Mahoor, M., Bartlett, K., Trinh, P., Cohn, J.: Disfa: A spontaneous facial action intensity database. IEEE Trans. on Affective Comp. 4(2), 151–160 (2013)
Lucey, P., Cohn, J., Prkachin, K., Solomon, P., Matthews, I.: Painful data: The unbc-mcmaster shoulder pain expression archive database. In: IEEE FG, pp. 57–64 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Yang, S., Rudovic, O., Pavlovic, V., Pantic, M. (2014). Personalized Modeling of Facial Action Unit Intensity. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2014. Lecture Notes in Computer Science, vol 8888. Springer, Cham. https://doi.org/10.1007/978-3-319-14364-4_26
Download citation
DOI: https://doi.org/10.1007/978-3-319-14364-4_26
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-14363-7
Online ISBN: 978-3-319-14364-4
eBook Packages: Computer ScienceComputer Science (R0)