Skip to main content

View-Constrained Latent Variable Model for Multi-view Facial Expression Classification

  • Conference paper
Advances in Visual Computing (ISVC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8888))

Included in the following conference series:

  • 2532 Accesses

Abstract

We propose a view-constrained latent variable model for multi-view facial expression classification. In this model, we first learn a discriminative manifold shared by multiple views of facial expressions, followed by the expression classification in the shared manifold. For learning, we use the expression data from multiple views, however, the inference is performed using the data from a single view. Our experiments on data of posed and spontaneously displayed facial expressions show that the proposed approach outperforms the state-of-the-art methods for multi-view facial expression classification, and several state-of-the-art methods for multi-view learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zeng, Z., Pantic, M., Roisman, G., Huang, T.: A survey of affect recognition methods: Audio, visual, and spontaneous expressions. IEEE Trans. on PAMI 31, 39–58 (2009)

    Article  Google Scholar 

  2. Zhu, Z., Ji, Q.: Robust real-time face pose and facial expression recovery. In: IEEE Int’l Conf. on CVPR, pp. 681–688 (2006)

    Google Scholar 

  3. Moore, S., Bowden, R.: Local binary patterns for multi-view facial expression recognition. CVIU 115, 541–558 (2011)

    Google Scholar 

  4. Hu, Y., Zeng, Z., Yin, L., Wei, X., Tu, J., Huang, T.S.: A study of non-frontal-view facial expressions recognition. In: ICPR, pp. 1–4 (2008)

    Google Scholar 

  5. Hesse, N., Gehrig, T., Gao, H., Ekenel, H.K.: Multi-view facial expression recognition using local appearance features. In: ICPR, pp. 3533–3536 (2012)

    Google Scholar 

  6. Rudovic, O., Pantic, M., Patras, I.: Coupled gaussian processes for pose-invariant facial expression recognition. IEEE Trans. on PAMI 35, 1357–1369 (2013)

    Article  Google Scholar 

  7. Rudovic, O., Patras, I., Pantic, M.: Regression-based multi-view facial expression recognition. In: Proc. of ICPR, pp. 4121–4124 (2010)

    Google Scholar 

  8. Zheng, W., Tang, H., Lin, Z., Huang, T.S.: Emotion recognition from arbitrary view facial images. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 490–503. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Tariq, U., Yang, J., Huang, T.S.: Multi-view facial expression recognition analysis with generic sparse coding feature. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012 Ws/Demos, Part III. LNCS, vol. 7585, pp. 578–588. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. on PAMI 24, 971–987 (2002)

    Article  Google Scholar 

  11. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning, 273–297 (1995)

    Google Scholar 

  12. Cootes, T.F., Edwards, G.J., Taylor, C.J., et al.: Active appearance models. IEEE Trans. on PAMI 23, 681–685 (2001)

    Article  Google Scholar 

  13. Lowe, D.: Object recognition from local scale-invariant features. In: ICCV, vol. 2, pp. 1150–1157 (1999)

    Google Scholar 

  14. Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using sparse coding for image classification. In: IEEE Conf. on CVPR, pp. 1794–1801 (2009)

    Google Scholar 

  15. Eleftheriadis, S., Rudovic, O., Pantic, M.: Shared gaussian process latent variable model for multi-view facial expression recognition. In: Bebis, G., et al. (eds.) ISVC 2013, Part I. LNCS, vol. 8033, pp. 527–538. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Shon, A., Grochow, K., Hertzmann, A., Rao, R.: Learning shared latent structure for image synthesis and robotic imitation. NIPS 18, 1233 (2006)

    Google Scholar 

  17. Bertsekas, D.P.: Constrained optimization and lagrange multiplier methods. Computer Science and Applied Mathematics. Academic Press, Boston (1982)

    MATH  Google Scholar 

  18. Ek, C., Lawrence, P.: Shared Gaussian Process Latent Variable Models. PhD thesis. Oxford Brookes University (2009)

    Google Scholar 

  19. Rasmussen, C., Williams, C.: Gaussian processes for machine learning, vol. 1. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  20. Urtasun, R., Darrell, T.: Discriminative gaussian process latent variable model for classification. In: ICML, pp. 927–934. ACM (2007)

    Google Scholar 

  21. Sundararajan, S., Keerthi, S.S.: Predictive approaches for choosing hyperparameters in gaussian processes. Neural Computation 13, 1103–1118 (2001)

    Article  MATH  Google Scholar 

  22. Gross, R., Matthews, I., Cohn, J., Kanade, T., Baker, S.: Multi-pie. Image and Vision Computing 28, 807–813 (2010)

    Article  Google Scholar 

  23. Belhumeur, P.N., Jacobs, D.W., Kriegman, D.J., Kumar, N.: Localizing parts of faces using a consensus of exemplars. In: IEEE Conf. on CVPR, pp. 545–552 (2011)

    Google Scholar 

  24. Sagonas, C., Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: A semi-automatic methodology for facial landmark annotation. In: CVPR-W 2013 (2013)

    Google Scholar 

  25. Bishop, C.M.: Pattern recognition and machine learning, vol. 4. Springer (2006)

    Google Scholar 

  26. Zheng, Z., Yang, F., Tan, W., Jia, J., Yang, J.: Gabor feature-based face recognition using supervised locality preserving projection. Signal Processing 87 (2007)

    Google Scholar 

  27. Zhong, G., Li, W.-J., Yeung, D.-Y., Hou, X., Liu, C.-L.: Gaussian process latent random field. In: AAAI Conference on Artificial Intelligence (2010)

    Google Scholar 

  28. Kan, M., Shan, S., Zhang, H., Lao, S., Chen, X.: Multi-view discriminant analysis. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part I. LNCS, vol. 7572, pp. 808–821. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  29. Sharma, A., Kumar, A., Daume, H., Jacobs, D.W.: Generalized multiview analysis: A discriminative latent space. In: IEEE Conf. on CVPR, pp. 2160–2167 (2012)

    Google Scholar 

  30. Niyogi, X.: Locality preserving projections. In: NIPS, vol. 16, p. 153 (2004)

    Google Scholar 

  31. Pantic, M., Patras, I.: Dynamics of facial expression: Recognition of facial actions and their temporal segments from face profile image sequences. IEEE Trans. on SMCB - Part B 36, 433–449 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Eleftheriadis, S., Rudovic, O., Pantic, M. (2014). View-Constrained Latent Variable Model for Multi-view Facial Expression Classification. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2014. Lecture Notes in Computer Science, vol 8888. Springer, Cham. https://doi.org/10.1007/978-3-319-14364-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14364-4_28

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14363-7

  • Online ISBN: 978-3-319-14364-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics