Skip to main content

Boosted Fractal Integral Paths for Object Detection

  • Conference paper
Advances in Visual Computing (ISVC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8888))

Included in the following conference series:

  • 2427 Accesses

Abstract

In boosting-based object detectors, weak classifiers are often build on Haar-like features using conventional integral images. That approach leads to the utilization of simple rectangle-shaped structures which are only partial suitable for curved-shaped structures, as present in natural object classes such as faces. In this paper, we propose a new class of fractal features based on space-filling curves, a special type of fractals also known as Peano curves. Our method incorporates the new feature class by computing integral images along these curves. Therefore space-filling curves offer our proposed features to describe a wider variety of shapes including self-similar structures. By introducing two subtypes of fractal features, three-point and four-point features, we get a richer representation of curved and topology separated but correlated structures. We compare AdaBoost using conventional Haar-like features and our proposed fractal feature class in several experiments on the well-known MIT+CMU upright face test set and a microscopy cell test set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Viola, P., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 57, 137–154 (2004)

    Article  Google Scholar 

  2. Sung, K.K., Poggio, T., Rowley, H.A., Baluja, S., Kanade, T.: MIT+CMU frontal face dataset a, b and c. (MIT+CMU)

    Google Scholar 

  3. Zhang, C., Zhang, Z.: A survey of recent advances in face detection. Technical report, Tech. rep., Microsoft Research (2010)

    Google Scholar 

  4. Li, S.Z., Zhang, Z., Shum, H.Y., Zhang, H.: Floatboost learning for classification. Advances in Neural Information Processing Systems, Microsoft Research Asia (2002)

    Google Scholar 

  5. Viola, P., Platt, J.C., Zhang, C.: Multiple instance boosting for object detection. Advances in Neural Information Processing 18, 1417–1426 (2007)

    Google Scholar 

  6. Warmuth, M.K., Glocer, K.A., Vishwanathan, S.V.N.: Entropy regularized lPBoost. In: Freund, Y., Györfi, L., Turán, G., Zeugmann, T. (eds.) ALT 2008. LNCS (LNAI), vol. 5254, pp. 256–271. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Warmuth, M.K., Glocer, K., Raetsch, G.: Boosting algorithms for maximizing the soft margin. Advances in Neural Information Processing Systems 20, 1585–1592 (2008)

    Google Scholar 

  8. Jiang, J.L., Loe, K.F.: S-adaboost and pattern detection in complex environment. In: CVPR 2003, pp. 413–418.

    Google Scholar 

  9. Xiao, R., Zhu, H., Sun, H., Tang, X.: Dynamic cascades for face detection. In: ICCV 2007 (2007)

    Google Scholar 

  10. Wang, X., Han, T.X., Yan, S.: An hog-lbp human detector with partial occlusion handling. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 32–39. IEEE (2009)

    Google Scholar 

  11. Zhang, L., Chu, R., Xiang, S., Liao, S., Li, S.Z.: Face detection based on multi-block LBP representation. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 11–18. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Sabzmeydani, P., Mori, G.: Detecting pedestrians by learning shapelet features. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8. IEEE (2007)

    Google Scholar 

  13. Lienhart, R., Maydt, J.: An extended set of haar-like features for rapid object detection. In: IEEE ICIP (2002)

    Google Scholar 

  14. Pham, M.T., Gao, Y., Hoang, V.D.D., Cham, T.J.: Fast polygonal integration and its application in extending haar-like features to improve object detection. In: CVPR 2010 (2010)

    Google Scholar 

  15. Freund, Y., Schapire, R.E.: A short introduction to boosting. Journal of Japanese Society for Artificial Intelligence 14, 771–780 (1999)

    Google Scholar 

  16. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proceedings of the Thirteenth International Conference, pp. 148–156.

    Google Scholar 

  17. Barnsley, M.F., Rising, H.: Fractals Everywhere. Academic Press Professional, Boston (1993)

    MATH  Google Scholar 

  18. Ansari, A.C., Fineberg, A.: Image data ordering and compression using peano scan and lot. Consumer Electronics, 1992. Digest of Technical Papers. ICCE (1992)

    Google Scholar 

  19. Dafner, R., Cohen-Or, D., Matias, Y.: Context-based space filling curves. Comput. Graph. Forum 19 (2000)

    Google Scholar 

  20. Lam, W.M., Shapiro, J.M., Sarnoff, D.: A class of fast algorithms for the peano-hilbert space-filling curve. In: ICIP(1), pp. 638–641 (1994)

    Google Scholar 

  21. Phuvan, S., Oh, T.K., Caviris, N.P., Li, Y., Szu, H.H.: Texture analysis by space-filling curves and one-dimensional haar wavelets. Optical Engineering 31(09), 1899–1906 (1992)

    Article  Google Scholar 

  22. Lindenmayer, A.: Mathematical models for cellular interaction in development: Parts i and ii. Journal of Theoretical Biology 18, 280–315 (1968)

    Article  Google Scholar 

  23. BioID-AG: Bioid face database. BioID Switzerland (2010)

    Google Scholar 

  24. Milborrow, S., Morkel, J., Nicolls, F.: The MUCT Landmarked Face Database. Pattern Recognition Association of South Africa (2010), http://www.milbo.org/muct

  25. Bradski, G.: The opencv library. Dr. Dobb’s Journal of Software Tools (2000)

    Google Scholar 

  26. Crowther, P.S., Cox, R.J.: A method for optimal division of data sets for use in neural networks. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds.) KES 2005. LNCS (LNAI), vol. 3684, pp. 1–7. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ehlers, A., Baumann, F., Rosenhahn, B. (2014). Boosted Fractal Integral Paths for Object Detection. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2014. Lecture Notes in Computer Science, vol 8888. Springer, Cham. https://doi.org/10.1007/978-3-319-14364-4_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14364-4_44

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14363-7

  • Online ISBN: 978-3-319-14364-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics