Skip to main content

Inpainting of Cyclic Data Using First and Second Order Differences

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8932))

Abstract

Cyclic data arise in various image and signal processing applications such as interferometric synthetic aperture radar, electroencephalogram data analysis, and color image restoration in HSV or LCh spaces. In this paper we introduce a variational inpainting model for cyclic data which utilizes our definition of absolute cyclic second order differences. Based on analytical expressions for the proximal mappings of these differences we propose a cyclic proximal point algorithm (CPPA) for minimizing the corresponding functional. We choose appropriate cycles to implement this algorithm in an efficient way. We further introduce a simple strategy to initialize the unknown inpainting region. Numerical results both for synthetic and real-world data demonstrate the performance of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Almeida, M., Figueiredo, M.: Deconvolving images with unknown boundaries using the alternating direction method of multipliers. IEEE Trans. on Image Process. 22(8), 3074–3086 (2013)

    Article  MathSciNet  Google Scholar 

  2. Bačák, M.: The proximal point algorithm in metric spaces. Isr. J. Math. 194(2), 689–701 (2013)

    Article  MATH  Google Scholar 

  3. Bačák, M.: Computing medians and means in Hadamard spaces. SIAM J. Optim. (to appear, 2014)

    Google Scholar 

  4. Ballester, C., Bertalmio, M., Caselles, V., Sapiro, G., Verdera, J.: Filling in by joint interpolation of vector fields and gray levels. IEEE Trans. Image Process. 10(8), 1200–1211 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bergmann, R., Laus, F., Steidl, G., Weinmann, A.: Second order differences of cyclic data and applications in variational denoising (Preprint, 2014)

    Google Scholar 

  6. Bertalmío, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proceedings of SIGGRAPH, New Orleans, USA, pp. 417–424 (2000)

    Google Scholar 

  7. Bertsekas, D.P.: Incremental gradient, subgradient, and proximal methods for convex optimization: a survey. Technical Report LIDS-P-2848, Laboratory for Information and Decision Systems, MIT, Cambridge, MA (2010)

    Google Scholar 

  8. Bertsekas, D.P.: Incremental proximal methods for large scale convex optimization. Math. Program., Ser. B 129(2), 163–195 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 1–42 (2009)

    MathSciNet  Google Scholar 

  10. Bugeau, A., Bertalmío, M., Caselles, V., Sapiro, G.: A comprehensive framework for image inpainting. IEEE Trans. Signal Process. 19, 2634–2645 (2010)

    Google Scholar 

  11. Bürgmann, R., Rosen, P.A., Fielding, E.J.: Synthetic aperture radar interferometry to measure earth’s surface topography and its deformation. Annu. Rev. Earth Planet. Sci. 28(1), 169–209 (2000)

    Article  Google Scholar 

  12. Cai, J.-F., Dong, B., Osher, S., Shen, Z.: Image restoration: Total variation, wavelet frames, and beyond. J. Amer. Math. Soc. 25(4), 1033–1089 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Caselles, V., Morel, J.-M., Sbert, C.: An axiomatic approach to image interpolation. IEEE Trans. on Image Process. 7(3), 376–386 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chambolle, A., Lions, P.-L.: Image recovery via total variation minimization and related problems. Numer. Math. 76(2), 167–188 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chan, T., Shen, J.: Local inpainting models and TV inpainting. SIAM J. Appl. Math. 62(3), 1019–1043 (2001)

    MathSciNet  Google Scholar 

  16. Chan, T.F., Marquina, A., Mulet, P.: High-order total variation-based image restoration. SIAM J. Sci. Comput. 22(2), 503–516 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Chan, T.F., Shen, J.: Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods. SIAM (2005)

    Google Scholar 

  18. Chefd’Hotel, C., Tschumperlé, D., Deriche, R., Faugeras, O.: Regularizing flows for constrained matrix-valued images. J. Math. Imaging Vis. 20(1-2), 147–162 (2004)

    Article  Google Scholar 

  19. Didas, S., Weickert, J., Burgeth, B.: Properties of higher order nonlinear diffusion filtering. J. Math. Imaging Vis. 35, 208–226 (2009)

    Article  MathSciNet  Google Scholar 

  20. Ferreira, O.P., Oliveira, P.R.: Proximal point algorithm on Riemannian manifolds. Optimization 51(2), 257–270 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Fisher, N.I.: Statistical Analysis of Circular Data. Cambridge University Press (1995)

    Google Scholar 

  22. Fletcher, P.: Geodesic regression and the theory of least squares on Riemannian manifolds. Int. J. Comput. Vision 105(2), 171–185 (2013)

    Article  MathSciNet  Google Scholar 

  23. Fletcher, P., Joshi, S.: Riemannian geometry for the statistical analysis of diffusion tensor data. Signal Process. 87(2), 250–262 (2007)

    Article  MATH  Google Scholar 

  24. Ghiglia, D.C., Pritt, M.D.: Two-dimensional phase unwrapping: theory, algorithms, and software. Wiley (1998)

    Google Scholar 

  25. Giaquinta, M., Modica, G., Souček, J.: Variational problems for maps of bounded variation with values in S 1. Calc. Var. 1(1), 87–121 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  26. Giaquinta, M., Mucci, D.: The BV-energy of maps into a manifold: relaxation and density results. Ann. Sc. Norm. Super. Pisa Cl. Sci. 5(4), 483–548 (2006)

    MATH  MathSciNet  Google Scholar 

  27. Giaquinta, M., Mucci, D.: Maps of bounded variation with values into a manifold: total variation and relaxed energy. Pure Appl. Math. Q. 3(2), 513–538 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Grohs, P., Hardering, H., Sander, O.: Optimal a priori discretization error bounds for geodesic finite elements. Technical Report 2013-16, Seminar for Applied Mathematics, ETH Zürich, Switzerland (2013)

    Google Scholar 

  29. Grohs, P., Wallner, J.: Interpolatory wavelets for manifold-valued data. Appl. Comput. Harmon. Anal. 27(3), 325–333 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  30. Guillemot, C., Le Meur, O.: Image inpainting: Overview and recent advances. IEEE Signal Process. Mag. 31(1), 127–144 (2014)

    Article  Google Scholar 

  31. Hinterberger, W., Scherzer, O.: Variational methods on the space of functions of bounded Hessian for convexification and denoising. Computing 76(1), 109–133 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  32. Jammalamadaka, S.R., SenGupta, A.: Topics in Circular Statistics. World Scientific Publishing Company (2001)

    Google Scholar 

  33. Lefkimmiatis, S., Bourquard, A., Unser, M.: Hessian-based norm regularization for image restoration with biomedical applications. IEEE Trans. Image Process. 21(3), 983–995 (2012)

    Article  MathSciNet  Google Scholar 

  34. Lellmann, J., Strekalovskiy, E., Koetter, S., Cremers, D.: Total variation regularization for functions with values in a manifold. In: IEEE ICCV 2013, pp. 2944–2951 (2013)

    Google Scholar 

  35. Lysaker, M., Lundervold, A., Tai, X.-C.: Noise removal using fourth-order partial differential equations with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Process. 12(12), 1579–1590 (2003)

    Article  MATH  Google Scholar 

  36. März, T.: Image inpainting based on coherence transport with adapted distance functions. SIAM J. Imaging Sci. 4(4), 981–1000 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  37. März, T.: A well-posedness framework for inpainting based on coherence transport. Found. Comput. Math. (to appear, 2014)

    Google Scholar 

  38. Masnou, S., Morel, J.-M.: Level lines based disocclusion. In: IEEE ICIP 1998, pp. 259–263 (1998)

    Google Scholar 

  39. Massonnet, D., Feigl, K.L.: Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 36(4), 441–500 (1998)

    Article  Google Scholar 

  40. Papafitsoros, K., Schönlieb, C.B.: A combined first and second order variational approach for image reconstruction. J. Math. Imaging Vis. 2(48), 308–338 (2014)

    Article  Google Scholar 

  41. Pennec, X.: Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements. J. Math. Imaging Vis. 25(1), 127–154 (2006)

    Article  MathSciNet  Google Scholar 

  42. Rahman, I.U., Drori, I., Stodden, V.C., Donoho, D.L.: Multiscale representations for manifold-valued data. Multiscale Model. Simul. 4(4), 1201–1232 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  43. Rocca, F., Prati, C., Guarnieri, A.M.: Possibilities and limits of SAR interferometry. In: Proc. Int. Conf. Image Process. Techn., pp. 15–26 (1997)

    Google Scholar 

  44. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  45. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1), 259–268 (1992)

    Article  MATH  Google Scholar 

  46. Scherzer, O.: Denoising with higher order derivatives of bounded variation and an application to parameter estimation. Computing 60, 1–27 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  47. Setzer, S., Steidl, G.: Variational methods with higher order derivatives in image processing. In: Approximation Theory XII: San Antonio 2007, pp. 360–385 (2008)

    Google Scholar 

  48. Setzer, S., Steidl, G., Teuber, T.: Infimal convolution regularizations with discrete l1-type functionals. Commun. Math. Sci. 9(3), 797–872 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  49. Strekalovskiy, E., Cremers, D.: Total variation for cyclic structures: Convex relaxation and efficient minimization. In: IEEE CVPR 2011, pp. 1905–1911 (2011)

    Google Scholar 

  50. Strekalovskiy, E., Cremers, D.: Total cyclic variation and generalizations. J. Math. Imaging Vis. 47(3), 258–277 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  51. Valkonen, T., Bredies, K., Knoll, F.: Total generalized variation in diffusion tensor imaging. SIAM J. Imag. Sci. 6(1), 487–525 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  52. Weinmann, A.: Interpolatory multiscale representation for functions between manifolds. SIAM J. Math. Anal. 44(1), 162–191 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  53. Weinmann, A., Demaret, L., Storath, M.: Total variation regularization for manifold-valued data (2013) (preprint)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bergmann, R., Weinmann, A. (2015). Inpainting of Cyclic Data Using First and Second Order Differences. In: Tai, XC., Bae, E., Chan, T.F., Lysaker, M. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2015. Lecture Notes in Computer Science, vol 8932. Springer, Cham. https://doi.org/10.1007/978-3-319-14612-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14612-6_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14611-9

  • Online ISBN: 978-3-319-14612-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics