Abstract
Cyclic data arise in various image and signal processing applications such as interferometric synthetic aperture radar, electroencephalogram data analysis, and color image restoration in HSV or LCh spaces. In this paper we introduce a variational inpainting model for cyclic data which utilizes our definition of absolute cyclic second order differences. Based on analytical expressions for the proximal mappings of these differences we propose a cyclic proximal point algorithm (CPPA) for minimizing the corresponding functional. We choose appropriate cycles to implement this algorithm in an efficient way. We further introduce a simple strategy to initialize the unknown inpainting region. Numerical results both for synthetic and real-world data demonstrate the performance of our algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Almeida, M., Figueiredo, M.: Deconvolving images with unknown boundaries using the alternating direction method of multipliers. IEEE Trans. on Image Process. 22(8), 3074–3086 (2013)
Bačák, M.: The proximal point algorithm in metric spaces. Isr. J. Math. 194(2), 689–701 (2013)
Bačák, M.: Computing medians and means in Hadamard spaces. SIAM J. Optim. (to appear, 2014)
Ballester, C., Bertalmio, M., Caselles, V., Sapiro, G., Verdera, J.: Filling in by joint interpolation of vector fields and gray levels. IEEE Trans. Image Process. 10(8), 1200–1211 (2001)
Bergmann, R., Laus, F., Steidl, G., Weinmann, A.: Second order differences of cyclic data and applications in variational denoising (Preprint, 2014)
Bertalmío, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proceedings of SIGGRAPH, New Orleans, USA, pp. 417–424 (2000)
Bertsekas, D.P.: Incremental gradient, subgradient, and proximal methods for convex optimization: a survey. Technical Report LIDS-P-2848, Laboratory for Information and Decision Systems, MIT, Cambridge, MA (2010)
Bertsekas, D.P.: Incremental proximal methods for large scale convex optimization. Math. Program., Ser. B 129(2), 163–195 (2011)
Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 1–42 (2009)
Bugeau, A., Bertalmío, M., Caselles, V., Sapiro, G.: A comprehensive framework for image inpainting. IEEE Trans. Signal Process. 19, 2634–2645 (2010)
Bürgmann, R., Rosen, P.A., Fielding, E.J.: Synthetic aperture radar interferometry to measure earth’s surface topography and its deformation. Annu. Rev. Earth Planet. Sci. 28(1), 169–209 (2000)
Cai, J.-F., Dong, B., Osher, S., Shen, Z.: Image restoration: Total variation, wavelet frames, and beyond. J. Amer. Math. Soc. 25(4), 1033–1089 (2012)
Caselles, V., Morel, J.-M., Sbert, C.: An axiomatic approach to image interpolation. IEEE Trans. on Image Process. 7(3), 376–386 (1998)
Chambolle, A., Lions, P.-L.: Image recovery via total variation minimization and related problems. Numer. Math. 76(2), 167–188 (1997)
Chan, T., Shen, J.: Local inpainting models and TV inpainting. SIAM J. Appl. Math. 62(3), 1019–1043 (2001)
Chan, T.F., Marquina, A., Mulet, P.: High-order total variation-based image restoration. SIAM J. Sci. Comput. 22(2), 503–516 (2000)
Chan, T.F., Shen, J.: Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods. SIAM (2005)
Chefd’Hotel, C., Tschumperlé, D., Deriche, R., Faugeras, O.: Regularizing flows for constrained matrix-valued images. J. Math. Imaging Vis. 20(1-2), 147–162 (2004)
Didas, S., Weickert, J., Burgeth, B.: Properties of higher order nonlinear diffusion filtering. J. Math. Imaging Vis. 35, 208–226 (2009)
Ferreira, O.P., Oliveira, P.R.: Proximal point algorithm on Riemannian manifolds. Optimization 51(2), 257–270 (2002)
Fisher, N.I.: Statistical Analysis of Circular Data. Cambridge University Press (1995)
Fletcher, P.: Geodesic regression and the theory of least squares on Riemannian manifolds. Int. J. Comput. Vision 105(2), 171–185 (2013)
Fletcher, P., Joshi, S.: Riemannian geometry for the statistical analysis of diffusion tensor data. Signal Process. 87(2), 250–262 (2007)
Ghiglia, D.C., Pritt, M.D.: Two-dimensional phase unwrapping: theory, algorithms, and software. Wiley (1998)
Giaquinta, M., Modica, G., Souček, J.: Variational problems for maps of bounded variation with values in S 1. Calc. Var. 1(1), 87–121 (1993)
Giaquinta, M., Mucci, D.: The BV-energy of maps into a manifold: relaxation and density results. Ann. Sc. Norm. Super. Pisa Cl. Sci. 5(4), 483–548 (2006)
Giaquinta, M., Mucci, D.: Maps of bounded variation with values into a manifold: total variation and relaxed energy. Pure Appl. Math. Q. 3(2), 513–538 (2007)
Grohs, P., Hardering, H., Sander, O.: Optimal a priori discretization error bounds for geodesic finite elements. Technical Report 2013-16, Seminar for Applied Mathematics, ETH Zürich, Switzerland (2013)
Grohs, P., Wallner, J.: Interpolatory wavelets for manifold-valued data. Appl. Comput. Harmon. Anal. 27(3), 325–333 (2009)
Guillemot, C., Le Meur, O.: Image inpainting: Overview and recent advances. IEEE Signal Process. Mag. 31(1), 127–144 (2014)
Hinterberger, W., Scherzer, O.: Variational methods on the space of functions of bounded Hessian for convexification and denoising. Computing 76(1), 109–133 (2006)
Jammalamadaka, S.R., SenGupta, A.: Topics in Circular Statistics. World Scientific Publishing Company (2001)
Lefkimmiatis, S., Bourquard, A., Unser, M.: Hessian-based norm regularization for image restoration with biomedical applications. IEEE Trans. Image Process. 21(3), 983–995 (2012)
Lellmann, J., Strekalovskiy, E., Koetter, S., Cremers, D.: Total variation regularization for functions with values in a manifold. In: IEEE ICCV 2013, pp. 2944–2951 (2013)
Lysaker, M., Lundervold, A., Tai, X.-C.: Noise removal using fourth-order partial differential equations with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Process. 12(12), 1579–1590 (2003)
März, T.: Image inpainting based on coherence transport with adapted distance functions. SIAM J. Imaging Sci. 4(4), 981–1000 (2011)
März, T.: A well-posedness framework for inpainting based on coherence transport. Found. Comput. Math. (to appear, 2014)
Masnou, S., Morel, J.-M.: Level lines based disocclusion. In: IEEE ICIP 1998, pp. 259–263 (1998)
Massonnet, D., Feigl, K.L.: Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 36(4), 441–500 (1998)
Papafitsoros, K., Schönlieb, C.B.: A combined first and second order variational approach for image reconstruction. J. Math. Imaging Vis. 2(48), 308–338 (2014)
Pennec, X.: Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements. J. Math. Imaging Vis. 25(1), 127–154 (2006)
Rahman, I.U., Drori, I., Stodden, V.C., Donoho, D.L.: Multiscale representations for manifold-valued data. Multiscale Model. Simul. 4(4), 1201–1232 (2005)
Rocca, F., Prati, C., Guarnieri, A.M.: Possibilities and limits of SAR interferometry. In: Proc. Int. Conf. Image Process. Techn., pp. 15–26 (1997)
Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976)
Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1), 259–268 (1992)
Scherzer, O.: Denoising with higher order derivatives of bounded variation and an application to parameter estimation. Computing 60, 1–27 (1998)
Setzer, S., Steidl, G.: Variational methods with higher order derivatives in image processing. In: Approximation Theory XII: San Antonio 2007, pp. 360–385 (2008)
Setzer, S., Steidl, G., Teuber, T.: Infimal convolution regularizations with discrete l1-type functionals. Commun. Math. Sci. 9(3), 797–872 (2011)
Strekalovskiy, E., Cremers, D.: Total variation for cyclic structures: Convex relaxation and efficient minimization. In: IEEE CVPR 2011, pp. 1905–1911 (2011)
Strekalovskiy, E., Cremers, D.: Total cyclic variation and generalizations. J. Math. Imaging Vis. 47(3), 258–277 (2013)
Valkonen, T., Bredies, K., Knoll, F.: Total generalized variation in diffusion tensor imaging. SIAM J. Imag. Sci. 6(1), 487–525 (2013)
Weinmann, A.: Interpolatory multiscale representation for functions between manifolds. SIAM J. Math. Anal. 44(1), 162–191 (2012)
Weinmann, A., Demaret, L., Storath, M.: Total variation regularization for manifold-valued data (2013) (preprint)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Bergmann, R., Weinmann, A. (2015). Inpainting of Cyclic Data Using First and Second Order Differences. In: Tai, XC., Bae, E., Chan, T.F., Lysaker, M. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2015. Lecture Notes in Computer Science, vol 8932. Springer, Cham. https://doi.org/10.1007/978-3-319-14612-6_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-14612-6_12
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-14611-9
Online ISBN: 978-3-319-14612-6
eBook Packages: Computer ScienceComputer Science (R0)