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Abstract

3D echocardiographic (3DE) imaging is a useful tool for assessing the complex geometry of the 

aortic valve apparatus. Segmentation of this structure in 3DE images is a challenging task that 

benefits from shape-guided deformable modeling methods, which enable inter-subject statistical 

shape comparison. Prior work demonstrates the efficacy of using continuous medial representation 

(cm-rep) as a shape descriptor for valve leaflets. However, its application to the entire aortic valve 

apparatus is limited since the structure has a branching medial geometry that cannot be explicitly 

parameterized in the original cm-rep framework. In this work, we show that the aortic valve 

apparatus can be accurately segmented using a new branching medial modeling paradigm. The 

segmentation method achieves a mean boundary displacement of 0.6 ± 0.1 mm (approximately 

one voxel) relative to manual segmentation on 11 3DE images of normal open aortic valves. This 

study demonstrates a promising approach for quantitative 3DE analysis of aortic valve 

morphology.
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1 Introduction

Echocardiography is the most commonly used imaging modality for heart valve assessment 

and has a prominent role in valve diagnostics and surgical planning. Heart valve 

segmentation in echocardiographic data, particularly 3D echocardiographic (3DE) images, is 

a means of extracting visual and quantitative information about valve morphology. 

However, image segmentation in this context is particularly challenging due to the signal 

dropouts and noise that are characteristic of this imaging modality, as well as the fact that 

many clinically relevant valve landmarks are defined geometrically rather than by distinctive 

image intensity characteristics. For example, several components of the aortic valve 

complex, such as the sinotubular junction (STJ), the commissures, and the basal attachments 

of the aortic cusps, are identified anatomically rather than by characteristic image intensity 

patterns.

Deformable modeling methods are well suited for tasks like shape-guided heart valve 

segmentation in 3DE images. These methods capture the geometry of an image region by 

deforming parametric surfaces under the influence of external data-driven forces and 

internal regularization forces. Shape constraints imposed on the deformable model can fill in 

areas of intensity inhomogeneity or establish boundaries between anatomical components 

that are not demarcated by image gradients. Once a parametric model of the valve is 

obtained, it can be interactively visualized, quantitatively analyzed, and statistically 

compared to other valve geometries.

Several deformable modeling methods for heart valve segmentation in 3DE images have 

been proposed. Ionasec et al developed a fully automatic technique for segmenting the aortic 

and mitral valves in 3DE images [1]. Given a database of manually landmarked images, 

machine learning algorithms globally locate and track several valve landmarks throughout 

the cardiac cycle. A spline model fitted through these points with the aid of learned 

boundary detectors represents valve geometry. In other work [2,3], the mitral and aortic 

leaflets are represented with a deformable model known as a continuous medial 

representation (cm-rep), which explicitly parameterizes the leaflets' medial axis (or 

morphological skeleton) [4]. The latter representation is volumetric; it defines the structure 

as one with locally varying thickness. One advantage of employing a geometrical model that 

explicitly defines thickness is that leaflet thickness is an important tissue parameter in 

biomechanical valve simulation [5].

While cm-rep has been effectively used to describe mitral and aortic leaflet morphology in 

3DE images, applying it to the entire aortic valve complex (including the sinuses of 

Valsava) is challenging. The heart valve leaflets themselves can be described in terms of a 

single non-branching medial manifold. However, the entire aortic valve complex has a 

branching medial representation, in which the basal attachments of the aortic cusps are 

seams that join the medial manifolds of the cusps and sinuses. The cm-rep methodology 

described in [4] has the limitation that medial axes are difficult to explicitly parameterize 

along curves at which medial surfaces meet. Attempts to do so have been relatively ad hoc 

[6,7] and do not strictly adhere to the medial axis definition originally proposed in [8].
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To overcome the challenge of modeling structures with branching medial topologies, a new 

boundary-centric deformable medial modeling paradigm has been proposed [9]. Rather than 

explicitly parameterizing a structure's medial axis and determining its boundary 

algorithmically as in [4], the new paradigm explicitly describes the model's boundary and 

implicitly maintains medial axis topology by imposing geometric constraints on the 

boundary of the model as it deforms. Since these constraints are nearly identical at the 

interior of the medial axis and along branch curves, the framework supports medial 

modeling of structures with branching medial axes while adhering to the medial axis 

definition in [8]. To date, the feasibility of modeling branching structures with this 

boundary-centric paradigm has only been demonstrated with a toy example and has not yet 

been translated to any real-world applications. The contribution of the present work is to 

leverage this paradigm for visual, quantitative, and statistical shape analysis of the aortic 

valve in 3DE images. This work conceptually demonstrates that deformable medial 

modeling is not limited to anatomical structures with simple shape; it is potentially 

applicable to a wider range of clinical problems that involve anatomical structures with 

complex geometries.

2 Materials and Methods

2.1 Background on Medial Axis Representation

Medial axis representation, which describes an object's geometry in terms of its 

morphological skeleton [8], combines the attractive features of boundary and region-based 

shape representations by defining a continuous relationship between the structure's boundary 

and interior. Suppose an object represented by the set  has a smooth boundary ∂S. 

The medial axis transform (MAT) of S is a mapping between points on ∂S and points on the 

object's interior that are centers of the maximally inscribed balls (MIBs) of S. An MIB is 

defined as a ball B inscribed in S that satisfies the condition that there exists no other ball B′ 

⊂ S such that B ⊂ B′ Note that in 3D the centers of the MIBs define a continuous surface, 

i.e. a medial manifold. Multiple medial manifolds join at seams, which are curves in 3D.

In the deformable medial modeling framework originally proposed in [4], a 3D cm-rep is a 

discretized model of an object's continuous medial axis comprising one or more medial 

manifolds. Object thickness is parametrically represented as a scalar field defined over the 

medial manifold(s). The deformable medial model is defined by tuples of values {m, R}, 

where m refers to the 3D coordinates of points on the medial manifold(s) and R is the radial 

thickness associated with m, or equivalently the distance between m and the closest point on 

∂S. During model deformation, the values {m, R} are updated to capture the medial 

geometry of the target object, and the model's boundary is derived analytically by inverting 

the MAT. Model deformation is an optimization problem that maximizes the overlap of the 

cm-rep with an image region. Constraints that ensure valid medial geometry are enforced as 

soft penalties in the objective function.

Alternatively, in the constrained boundary-centric deformable medial modeling framework 

proposed in [9], ∂S is explicitly parameterized and the MAT of S is encoded by grouping 

tuples of points on ∂S using “medial links”. For example, two boundary points x1, x2 ∈ ∂S 
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are defined as being medially linked if they are both members of the same MIB in S. Note 

that MIBs may be associated with one, two, or three medially linked boundary points 

depending on their position along the medial axis (Fig. 1a). This boundary-centric approach 

to medial representation leverages the fact that transformations of S that preserve medial 

links also preserve the branching structure of the medial axis. The following are the 

sufficient conditions for a transformation to preserve medial links. A ball with center m ∈ S 

and radius R is tangent to ∂S at a point x if and only if m = x − RN where N is the outward 

unit normal to ∂S at X. Such a ball is an MIB in S if ∀y ∈ ∂S, ‖y − m‖ ≥ R. This observation 

leads to the condition that two points x1, x2 ∈ ∂S are medially linked if and only if there 

exists R < 0 such that x1 − RN1 = x2 − RN2 and ‖y − (x1 − RN1)‖ < R for all y ∈ ∂S. In [9], 

constrained optimization is used to ensure that these conditions are satisfied during model 

deformation. Additional hard constraints are used to enforce geometric quality on the 

discretization of ∂S during deformation. Since the constraints are nearly the same on the 

interior of the medial axis as they are along branch curves, this latter approach to deformable 

medial modeling circumvents the challenge of explicitly parameterizing the medial axis at 

branch curves.

2.2 Medial Modeling of the Aortic Valve Complex

The aortic valve apparatus is an anatomic structure with a branching medial axis, meaning 

that the medial axis consists of several surfaces that meet at curves, referred to as seams. 

Our delineation of the aortic valve extends from the outflow of the left ventricle to the STJ 

and includes the bulbous aortic sinuses and three cusps (Fig. 1b–c). The aortic root is 

modeled as a tubular shape to which three fin-like structures (the aortic cusps) are attached. 

The semilunar attachments of the cusps are seams in the medial axis. Free edges occur at the 

level of the left ventricular outflow and STJ, as well as the cusps' free margins.

Deformable modeling requires a pre-defined model, or template, of the anatomic structure of 

interest. Template generation involves manual interaction, but the deformable model is 

generated only once and thereafter is used to segment new instances of the target structure. 

To obtain a medial model of the aortic valve complex, the 3D Voronoi skeleton of a 

manually segmented valve is first generated (Fig. 2a–b). Then a triangulated mesh is created 

with an interactive tool that allows the user to select and triangulate points on the object's 

skeleton. The result is a coarse representation of the aortic valve's medial axis, shown in Fig. 

2c. To obtain a boundary mesh from the skeleton, a duplicate of the medial mesh is created 

and the two copies of the mesh are “inflated” to give the aortic root walls and cusps finite 

thickness (Fig. 2d). Connectivity and vertex modifications are made to ensure proper medial 

linkage. Medial links are encoded on the boundary mesh by assigning each vertex i a medial 

link index. . Any two mesh vertices i,j that satisfy Mi = Mj are considered medially 

linked, meaning that they are members of the same MIB. Boundary vertices may be 

medially linked to two, three, or no other boundary vertices depending on where the MIB is 

located on the medial axis (on the interior, along a seam, or on an edge).

Multi-atlas Segmentation—To guide model fitting to a target 3DE image, a preliminary 

segmentation of the aortic valve apparatus is obtained by multi-atlas label fusion. Briefly, a 

collection of atlases (3DE images and labels for the aortic valve components) is registered to 
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a target image, first with a landmark-guided affine transformation and then diffeomorphic 

deformable registration. The candidate segmentations generated by each atlas are fused to 

create a consensus segmentation using the weighted voting method detailed in [10]. Five 

manually identified landmarks are used for registration initialization: three aortic 

commissures and two points marking the centers of the outflow tract at the level of left 

ventricle and the STJ. The reference atlas set is described in Section 2.3.

Model Fitting—In [9], the fitting of a medially constrained parametric boundary model to 

a target image is implemented as an iterative closest point (ICP) surface-matching problem. 

Since ICP is sensitive to initialization, deformable registration between the template in Fig. 

2 and the multi-atlas segmentation of the target image is first performed to initialize the 

template prior to ICP surface matching. Then during ICP surface matching, the objective 

function of the constrained optimization function incorporates both the dissimilarity between 

the deforming model and target multi-atlas segmentation, as well as irregularity of the 

deforming mesh. The constraints include the inequalities described in Section 2.1 that 

preserve medial linkages, as well as mesh quality constraints. The variables in the 

optimization problem are the boundary vertex coordinates, as well as additional “helper” 

variables (such as the unit normal vector to each boundary vertex) introduced in order to 

make the constraints quadratic. Optimization is performed using the Ipopt method [11].

2.3 Dataset and Segmentation Evaluation

Automated segmentation of the aortic valve apparatus was evaluated in a leave-one-out 

cross-validation on a set of transesophageal 3DE images obtained from 11 human subjects 

with normal aortic valve morphology. These subjects underwent cardiac surgery for reasons 

unrelated to the aortic valve. The images were acquired pre-operatively with the iE33 

platform (Philips Medical Systems, Andover, MA) using a 2 to 7 MHz matrix-array 

transducer. For each subject, a 3DE image of the aortic valve at mid systole was selected for 

analysis. The images were exported with an approximate size of 224 × 208 × 208 voxels 

with nearly isotropic resolution of 0.4 to 0.8 mm. To evaluate segmentation accuracy, each 

3DE dataset was segmented using the other 10 datasets as reference atlases for multi-atlas 

segmentation. The automated and manual segmentations were compared based on 

symmetric mean boundary displacement.

3 Results

The original boundary mesh of the aortic valve complex had 433 vertices and 866 triangles. 

Fig. 3 illustrates a representative deformable model of the aortic valve (fitted to the results 

of multi-atlas segmentation) overlaid on the corresponding manual segmentation.

The mean boundary displacement (MBD) between the manual segmentations and the 

deformable model fitted to the results of multi-atlas segmentation was 0.6 ± 0.1 mm. The 

MBD and the mean difference in the radial thickness are shown in color on a mean model of 

the aortic valve in Fig. 4. For reference, the MBD between the manual segmentations and 

the deformable models fitted directly to the manual segmentations was 0.4 ± 0.03 mm, and 

the MBD between the manual and multi-atlas segmentations without any model fitting was 

0.6 ± 0.1 mm.
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4 Discussion

This study is the first to demonstrate that deformable medial modeling can effectively 

represent an anatomical structure with a branching medial topology in a way that adheres to 

Blum's original definition of the medial axis. By preserving the branching configuration of 

the medial axis during model deformation, the method produces patient-specific anatomical 

shape representations that have inter-subject point correspondences and can be statistically 

compared in a straightforward manner. The method extends the utility of medial modeling 

for medical image and statistical shape analysis since many structures in the human body 

have complex geometries that cannot be represented in terms of a non-branching 

morphological skeleton.

The aortic valve has a branching medial geometry that is well suited for the deformable 

modeling paradigm proposed in [9]. To assess the ability of the deformable medial model to 

capture this complex geometry, the model was fitted directly to the 11 manual 

segmentations and the MBD was computed. The resulting MBD of 0.4 ± 0.03 mm 

demonstrates that the medial model can indeed capture the shape of the aortic valve 

apparatus. The MBD between the manual segmentation and the medial models fitted to the 

results of multi-atlas segmentation (0.6 ± 0.1 mm) was on the order of one voxel. The 

similarity of the multi-atlas and manual segmentations (without model fitting) was nearly 

identical, suggesting that improvements in multi-atlas segmentation could enhance the 

accuracy of deformable medial modeling. The advantage of a medial representation over the 

multi-atlas segmentation alone is that the model identifies landmarks and facilitates 

statistical comparison of shape features such as thickness.

The manual versus automatic segmentation comparison in this study is on par with one of 

few studies on automatic aortic valve segmentation in 3DE images, wherein the authors 

report an MBD of 1.54 ± 1.17 mm [1]. As shown in Fig. 4, the localized MBD is uniformly 

low across most of the sinus segments and cusps, with the largest error occurring at the STJ. 

This localized error is not surprising, since the STJ is an anatomical boundary rather than an 

intensity-based boundary in the 3DE image. While this study is a proof of concept of the 

branching medial modeling framework proposed in [9], future work will focus on the 

clinical application of medial modeling of the aortic valve apparatus, including image 

segmentation of pathological cases and of the valve at multiple time points in the cardiac 

cycle.
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Fig. 1. 
(a) Diagram of 2D medial geometry showing an object's boundary (gray), medial axis 

(dashed green curves), and several MIBs (black circles). Centers of MIBs (red, pink, blue) 

are associated with one, two, or three linked boundary points (marked by colored lines) 

depending on their location along the medial axis. The blue point is a branch point in the 

medial axis. Note that this diagram is 2D for illustrative purposes only; model fitting is 

performed entirely in 3D. (b) Model of the aortic root and cusps viewed from the ascending 

aorta. (c) Deformable model of the aortic valve apparatus, clipped with respect to the red 

reference rectangle in (b). The model's medial manifolds are green and boundary is gray. 

Blue arrows point to branch points where the medial manifolds of the cusps and sinuses 

meet. (d) Slice of the original 3D image oriented with respect to the red reference rectangle 

in (b). (RC = right coronary cusp, LC = left coronary cusp, NC = non-coronary cusp).
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Fig. 2. 
The boundary template generation process. (a) Manual segmentation of the aortic valve 

complex viewed from the side. (b) Voronoi skeleton of the manual segmentation. (c) 

Triangulated mesh of the medial axis. (d) Boundary mesh (translucent) generated from the 

medial mesh (red). (e) Three views of the final template from a side (left), ventricular 

(center), and aortic (right) perspective. (LVO = left ventricular outflow).
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Fig. 3. 
(Left) Fitted model of the aortic valve complex (gray) overlaid on the manual segmentation 

(red) as viewed from the ascending aorta. (Right) Cross-sections of the 3DE image of the 

aortic valve with the manual segmentation in red and the model fitting in green. Overlap of 

the manual and automated segmentations is shown in blue. (RC = right coronary cusp, NC = 

non-coronary cusp, LC = left coronary cusp).
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Fig. 4. 
Mean boundary displacement (top row) and mean difference in radial thickness (Rdiff, 

bottom row) are displayed in color on a mean model of the aortic valve complex. The valve 

is shown from three viewpoints: aortic (left), side (center), and ventricular (right) 

perspectives. (LC = left coronary, NC = non-coronary, RC = right coronary, STJ = 

sinotubular junction, LVO = left ventricular outflow).
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