Abstract
Computational models of cardiac electrophysiology are being investigated for improved patient selection and planning of therapies like cardiac resynchronization therapy (CRT). However, their clinical applicability is limited unless their parameters are fitted to the physiology of an individual patient. In this paper, a method that estimates spatially-varying electrical diffusivities from routine ECG data and dynamic cardiac images is presented. Contrary to current methods based on invasive electrophysiology studies or body surface potential mapping, our approach relies on widely available 12-lead ECG and motion information obtained from clinical images. First, a map of mechanical activation time is derived from a cardiac strain map. Then, regional electrical diffusivities are personalized such that the computed cardiac depolarization matches both the mechanical activation map and measured ECG features. The fit between measured and computed electrocardiography data after model personalization is evaluated on 14 dilated cardiomyopathy patients, exhibiting low mean errors in terms of the diagnostic ECG features QRS duration (0.1 ms) and electrical axis (10.6\(^{\circ }\)). The proposed regional approach outperforms global personalization when 12-lead ECG is the only electrophysiology data available. Furthermore, promising results of a preliminary CRT study on one patient demonstrate the predictive power of the personalized model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dickstein, K., Cohen-Solal, A., Filippatos, G., McMurray, J.J., Ponikowski, P., Poole-Wilson, P.A., Strömberg, A., Veldhuisen, D.J., Atar, D., Hoes, A.W., et al.: Esc guidelines for the diagnosis and treatment of acute and chronic heart failure. European Journal of Heart Failure 10(10), 933–989 (2008)
Zannad, F., Huvelle, E., Dickstein, K., Veldhuisen, D.J., Stellbrink, C., Køber, L., Lechat, P.: Left bundle branch block as a risk factor for progression to heart failure. European Journal of Heart Failure (2007)
Kass, D.A.: Cardiac resynchronization therapy. Journal of Cardiovascular Electrophysiology 16(s1), 35–41 (2005)
Zettinig, O., Mansi, T., Neumann, D., Georgescu, B., Rapaka, S., Seegerer, P., Kayvanpour, E., Sedaghat-Hamedani, F., Amr, A., Haas, J., Steen, H., Katus, H., Meder, B., Navab, N., Kamen, A., Comaniciu, D.: Data-driven estimation of cardiac electrical diffusivity from 12-lead ECG signals. Medical Image Analysis (2014)
Talbot, H., Duriez, C., Courtecuisse, H., Relan, J., Sermesant, M., Cotin, S., Delingette, H.: Towards real-time computation of cardiac electrophysiology for training simulator. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2012. LNCS, vol. 7746, pp. 298–306. Springer, Heidelberg (2013)
Relan, J., Chinchapatnam, P., Sermesant, M., Rhode, K., Ginks, M., Delingette, H., Rinaldi, C.A., Razavi, R., Ayache, N.: Coupled personalization of cardiac electrophysiology models for prediction of ischaemic ventricular tachycardia. Interface Focus 1(3), 396–407 (2011)
Dössel, O., Krueger, M.W., Weber, F.M., Wilhelms, M., Seemann, G.: Computational modeling of the human atrial anatomy and electrophysiology. Medical & Biological Engineering & Computing 50(8), 773–799 (2012)
Neumann, D., Mansi, T., Grbic, S., Voigt, I., Georgescu, B., Kayvanpour, E., Amr, A., Sedaghat-Hamedani, F., Haas, J., Meder, B., Katus, H., Hornegger, J., Kamen, A., Comaniciu, D.: Automatic image-to-model framework for patient-specific electromechanical modeling of the heart. In: ISBI. IEEE (2014)
Risum, N., Strauss, D., Sogaard, P., Loring, Z., Hansen, T.F., Bruun, N.E., Wagner, G., Kisslo, J.: Left bundle-branch block: The relationship between electrocardiogram electrical activation and echocardiography mechanical contraction. American Heart Journal 166(2), 340–348 (2013)
Jackson, T., Sohal, M., Chen, Z., Child, N., Sammut, E., Behar, J., Claridge, S., Carr-White, G., Razavi, R., Rinaldi, C.A.: A u-shaped ‘type ii’ contraction pattern in patients with strict left bundle branch block predicts super-response to cardiac resynchronization therapy. Heart Rhythm (2014)
Oubel, E., De Craene, M., Hero, A.O., Pourmorteza, A., Huguet, M., Avegliano, G., Bijnens, B., Frangi, A.F.: Cardiac motion estimation by joint alignment of tagged mri sequences. Medical Image Analysis 16(1), 339–350 (2012)
Prakosa, A., Sermesant, M., Allain, P., Villain, N., Rinaldi, C., Rhode, K., Razavi, R., Delingette, H., Ayache, N.: Cardiac electrophysiological activation pattern estimation from images using a patient-specific database of synthetic image sequences. IEEE Transactions on Biomedical Engineering 61(2), 235–245 (2014)
Jolly, M.P., Guetter, C., Guehring, J.: Cardiac segmentation in mr cine data using inverse consistent deformable registration. In: ISBI, pp. 484–487. IEEE (2010)
Guetter, C., Xue, H., Chefd’Hotel, C., Guehring, J.: Efficient symmetric and inverse-consistent deformable registration through interleaved optimization. In: ISBI, pp. 590–593. IEEE (2011)
Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Four-chamber heart modeling and automatic segmentation for 3-d cardiac ct volumes using marginal space learning and steerable features. IEEE T-MI 27(11), 1668–1681 (2008)
Lombaert, H., Peyrat, J., Croisille, P., Rapacchi, S., Fanton, L., Cheriet, F., Clarysse, P., Magnin, I., Delingette, H., Ayache, N.: Human atlas of the cardiac fiber architecture: Study on a healthy population. IEEE T-MI 31(7), 1436–1447 (2012)
Mitchell, C.C., Schaeffer, D.G.: A two-current model for the dynamics of cardiac membrane. Bulletin of Mathematical Biology 65(5), 767–793 (2003)
Powell, M.J.: The bobyqa algorithm for bound constrained optimization without derivatives. Cambridge NA Report, University of Cambridge, Cambridge (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Seegerer, P. et al. (2015). Estimation of Regional Electrical Properties of the Heart from 12-Lead ECG and Images. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart - Imaging and Modelling Challenges. STACOM 2014. Lecture Notes in Computer Science(), vol 8896. Springer, Cham. https://doi.org/10.1007/978-3-319-14678-2_21
Download citation
DOI: https://doi.org/10.1007/978-3-319-14678-2_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-14677-5
Online ISBN: 978-3-319-14678-2
eBook Packages: Computer ScienceComputer Science (R0)