Abstract
This paper presents exploratory subgroup analytics on ubiquitous data: We propose subgroup discovery and assessment approaches for obtaining interesting descriptive patterns and provide a novel graph-based analysis approach for assessing the relations between the obtained subgroup set. This exploratory visualization approaches allows for the comparison of subgroups according to their relations to other subgroups and to include further parameters, e.g., geo-spatial distribution indicators. We present and discuss analysis results utilizing real-world data given by geo-tagged noise measurements with associated subjective perceptions and a set of tags describing the semantic context.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Abbasi, R., Chernov, S., Nejdl, W., Paiu, R., Staab, S.: Exploiting flickr tags and groups for finding landmark photos. In: Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds.) ECIR 2009. LNCS, vol. 5478, pp. 654–661. Springer, Heidelberg (2009)
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of VLDB, pp. 487–499. Morgan Kaufmann (1994)
Appice, A., Ceci, M., Lanza, A., Lisi, F., Malerba, D.: Discovery of spatial association rules in geo-referenced census data: a relational mining approach. Intell. Data Anal. 7(6), 541–566 (2003)
Atzmueller, M.: Mining social media: key players, sentiments, and communities. WIREs: Data Min. Knowl. Disc. 2(5), 411–419 (2012)
Atzmueller, M., Becker, M., Doerfel, S., Kibanov, M., Hotho, A., Macek, B.E., Mitzlaff, F., Mueller, J., Scholz, C., Stumme, G.: Ubicon: observing social and physical activities. In: Proceedings of IEEE International Conference on Cyber, Physical and Social Computing, pp. 317–324. IEEE Computer Society, Washington, DC, USA (2012)
Atzmueller, M., Becker, M., Kibanov, M., Scholz, C., Doerfel, S., Hotho, A., Macek, B.E., Mitzlaff, F., Mueller, J., Stumme, G.: Ubicon and its applications for ubiquitous social computing. N. Rev. Hypermedia Multimedia 20(1), 53–77 (2014)
Atzmueller, M., Lemmerich, F.: Fast subgroup discovery for continuous target concepts. In: Rauch, J., Raś, Z.W., Berka, P., Elomaa, T. (eds.) ISMIS 2009. LNCS, vol. 5722, pp. 35–44. Springer, Heidelberg (2009)
Atzmueller, M., Lemmerich, F.: VIKAMINE - Open-Source Subgroup Discovery, Pattern Mining, and Analytics. Machine Learning and Principles and Practice of Knowledge Discovery in Databases. LNCS, pp. 842–845. Springer, Berlin (2012)
Atzmueller, M., Lemmerich, F.: Exploratory pattern mining on social media using geo-references and social tagging information. Int. J. Web Sci. (IJWS), 1/2(2) (2013)
Atzmueller, M., Puppe, F.: Semi-automatic visual subgroup mining using VIKAMINE. Journal of Universal Computer Science 11(11), 1752–1765 (2005)
Atzmüller, M., Puppe, F.: A methodological view on knowledge-intensive subgroup discovery. In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS (LNAI), vol. 4248, pp. 318–325. Springer, Heidelberg (2006)
Atzmüller, M., Puppe, F.: SD-Map – A fast algorithm for exhaustive subgroup discovery. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 6–17. Springer, Heidelberg (2006)
Atzmueller, M., Puppe, F.: A case-based approach for characterization and analysis of subgroup patterns. J. Appl. Intell. 28(3), 210–221 (2008)
Atzmueller, M., Puppe, F., Buscher, H.P.: Exploiting background knowledge for knowledge-intensive subgroup discovery. In: Proceedings of 19th International Joint Conference on Artificial Intelligence (IJCAI-05), pp. 647–652. Edinburgh, Scotland (2005)
Becker, M., Mueller, J., Hotho, A., Stumme, G.: A generic platform for ubiquitous and subjective data. In: Proceedings of 1st International Workshop on Pervasive Urban Crowdsensing Architecture and Applications, PUCAA 2013 (2013)
Boley, M., Horváth, T., Poigné, A., Wrobel, S.: Listing closed sets of strongly accessible set systems with applications to data mining. Theor. Comput. Sci. 411(3), 691–700 (2010)
Ceci, M., Appice, A., Malerba, D.: Time-slice density estimation for semantic-based tourist destination suggestion. In: Proceedings of ECAI 2010, pp. 1107–1108. IOS Press, Amsterdam, The Netherlands, The Netherlands (2010)
Diestel, R.: Graph Theory. Springer, Berlin (2006)
Ganter, B., Stumme, G., Wille, R. (eds.): Formal Concept Analysis, Foundations and Applications. Lecture Notes in Computer Science. Springer, Berlin (2005)
Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: current status and future directions. Data Min. Knowl. Disc. 15, 55–86 (2007)
Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2006)
Hotelling, H.: The generalization of student’s ratio. Ann. Math. Statist. 2(3), 360–378 (1931)
Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999)
Kleinberg, J.: Bursty and hierarchical structure in streams. In: Proceedings of KDD, pp. 91–101. ACM, New York, NY, USA (2002)
Klösgen, W.: Advances in knowledge discovery and data mining. In: Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Explora: A Multipattern and Multistrategy Discovery Assistant, pp. 249–271. AAAI, California (1996)
Knobbe, A., Fürnkranz, J., Cremilleux, B., Scholz, M.: From local patterns to global models: the lego approach to data mining. In: Proceedings of ECML/PKDD’08 LeGO Workshop (2008)
Koperski, K., Han, J., Adhikary, J.: Mining knowledge in geographical data. Commun. ACM 26, 65–74 (1998)
Lakhal, L., Stumme, G.: Efficient mining of association rules based on formal concept analysis. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 180–195. Springer, Heidelberg (2005)
van Leeuwen, M., Knobbe, A.J.: Diverse subgroup set discovery. Data Min. Knowl. Discov. 25(2), 208–242 (2012)
Lemmerich, F., Becker, M., Atzmueller, M.: Generic pattern trees for exhaustive exceptional model mining. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2008, Part II. LNCS, vol. 5212, pp. 277–292. Springer, Heidelberg (2008)
Lemmerich, F., Rohlfs, M., Atzmueller, M.: Fast discovery of relevant subgroup patterns. In: Proceedings of 23rd International FLAIRS Conference, pp. 428–433. AAAI Press, Palo Alto, CA, USA (2010)
Lindstaedt, S., Pammer, V., Mörzinger, R., Kern, R., Mülner, H., Wagner, C.: Recommending tags for pictures based on text, visual content and user context. In: Proceedings of 3rd International Conference on Internet and Web Applications and Services, pp. 506–511. IEEE Computer Society, Washington, DC, USA (2008)
Liu, Z.: A survey on social image mining. Intell. Comput. Inf. Sci. 134, 662–667 (2011)
R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2009). http://www.R-project.org
Rattenbury, T., Naaman, M.: Methods for extracting place semantics from flickr tags. ACM Trans. Web 3(1), 1:1–1:30 (2009)
Richter, K.-F., Winter, S.: Citizens as database: conscious ubiquity in data collection. In: Pfoser, D., Tao, Y., Mouratidis, K., Nascimento, M.A., Mokbel, M., Shekhar, S., Huang, Y. (eds.) SSTD 2011. LNCS, vol. 6849, pp. 445–448. Springer, Heidelberg (2011)
Roitman, H., Raviv, A., Hummel, S., Erera, S., Konopniki, D.: Microcosm: visual discovery, exploration and analysis of social communities. In: Proceedings of IUI, pp. 5–8. ACM, New York, NY, USA (2014)
Santini, S., Ostermaier, B., Adelmann, R.: On the use of sensor nodes and mobile phones for the assessment of noise pollution levels in urban environments. In: Proceedings of International Conference on Networked Sensing Systems (INSS), pp. 1–8 (2009)
Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings of IEEE Symposium on Visual Languages, pp. 336–343. Boulder, Colorado (1996)
Sigurbjörnsson, B., van Zwol, R.: Flickr tag recommendation based on collective knowledge. In: Proceeding of the 17th International Conference on World Wide Web, pp. 327–336. WWW ’08, ACM, New York, NY, USA (2008)
Strehl, A., Ghosh, J., Mooney, R.: Impact of similarity measures on web-page clustering. In: AAAI WS AI for Web Search, pp. 58–64. Austin, TX, USA (2000)
Wrobel, S.: An algorithm for multi-relational discovery of subgroups. In: Proceedings of 1st European Symposium on Principles of Data Mining and Knowledge Discovery (PKDD-97), pp. 78–87. Springer, Berlin (1997)
Yin, Z., Cao, L., Han, J., Zhai, C., Huang, T.: Geographical topic discovery and comparison. In: WWW 2011, pp. 247–256. ACM, New York, NY, USA (2011)
Zhang, H., Korayem, M., You, E., Crandall, D.J.: Beyond co-occurrence: discovering and visualizing tag relationships from geo-spatial and temporal similarities. In: Proceedings of International Conference on Web Search and Data Mining, pp. 33–42. ACM, New York, NY, USA (2012)
Acknowledgements
This work has been supported by the VENUS research cluster at the interdisciplinary Research Center for Information System Design (ITeG) at Kassel University, and parts of this research was funded by the European Union in the 7th Framework programme EveryAware project (FET-Open).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Atzmueller, M., Mueller, J., Becker, M. (2015). Exploratory Subgroup Analytics on Ubiquitous Data. In: Atzmueller, M., Chin, A., Scholz, C., Trattner, C. (eds) Mining, Modeling, and Recommending 'Things' in Social Media. MUSE MSM 2013 2013. Lecture Notes in Computer Science(), vol 8940. Springer, Cham. https://doi.org/10.1007/978-3-319-14723-9_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-14723-9_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-14722-2
Online ISBN: 978-3-319-14723-9
eBook Packages: Computer ScienceComputer Science (R0)