Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9060))

  • 1007 Accesses

Abstract

Default rules of the form “If A then (usually, probably) B” can be represented conveniently by conditionals. To every consistent knowledge base \(\mathcal{R}\) with such qualitative conditionals over a propositional language, system Z assigns a unique minimal model that accepts every conditional in \(\mathcal{R}\) and that is therefore a model of \(\mathcal{R}\) inductively completing the explicitly given knowledge. In this paper, we propose a generalization of system Z for a first-order setting. For a first-order conditional knowledge base \(\mathcal{R}\) over unary predicates, we present the definition of a system Z-like ranking function, prove that it yields a model of \(\mathcal{R}\), and illustrate its construction by a detailed example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adams, E.: Probability and the logic of conditionals. In: Hintikka, J., Suppes, P. (eds.) Aspects of Inductive Logic, pp. 265–316. North-Holland, Amsterdam (1966)

    Chapter  Google Scholar 

  2. Beierle, C., Kern-Isberner, G.: Methoden wissensbasierter Systeme - Grundlagen, Algorithmen, Anwendungen, 5th, revised and extended edn. Springer, Wiesbaden (2014)

    Google Scholar 

  3. Bonatti, P., Faella, M., Sauro, L.: Defeasible inclusions in low-complexity DLs. Journal of Artificial Intelligence Research 42, 719–764 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Brewka, G.: Tweety - still flying: Some remarks on abnormal birds applicable rules and a default prover. In: Kehler, T. (ed.) Proceedings of the 5th National Conference on Artificial Intelligence, Philadelphia, PA, August 11-15. Science, vol. 1, pp. 8–12. Morgan Kaufmann (1986)

    Google Scholar 

  5. Britz, K., Heidema, J., Meyer, T.: Semantic preferential subsumption. In: Proceedings of KR-2008. pp. 476–484. AAAI Press/MIT Press (2008)

    Google Scholar 

  6. Delgrande, J.: On first-order conditional logics. Artificial Intelligence 105, 105–137 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. de Finetti, B.: La prévision, ses lois logiques et ses sources subjectives. Ann. Inst. H. Poincaré 7 (1937), English translation in Kyburg, H., Smokler, H.E.: Studies in Subjective Probability, pp. 93-158. Wiley, New York (1964)

    Google Scholar 

  8. Gelfond, M., Leone, N.: Logic programming and knowledge representation – the A-prolog perspective. Artificial Intelligence 138, 3–38 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Giordano, L., Gliozzi, V., Olivetti, N.: Minimal model semantics and rational closure in description logics. In: Proceedings of DL-2013 (2013)

    Google Scholar 

  10. Goldszmidt, M., Pearl, J.: Qualitative probabilities for default reasoning, belief revision, and causal modeling. Artificial Intelligence 84, 57–112 (1996)

    Article  MathSciNet  Google Scholar 

  11. Kern-Isberner, G.: A thorough axiomatization of a principle of conditional preservation in belief revision. Annals of Mathematics and Artificial Intelligence 40(1-2), 127–164 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kern-Isberner, G., Eichhorn, C.: Structural inference from conditional knowledge bases. Studia Logica, Special Issue Logic and Probability: Reasoning in Uncertain Environments 102(4) (2014)

    Google Scholar 

  13. Kern-Isberner, G., Thimm, M.: A ranking semantics for first-order conditionals. In: De Raedt, L., Bessiere, C., Dubois, D., Doherty, P., Frasconi, P., Heintz, F., Lucas, P. (eds.) Proceedings 20th European Conference on Artificial Intelligence, ECAI-2012. Frontiers in Artificial Intelligence and Applications, vol. 242, pp. 456–461. IOS Press (2012)

    Google Scholar 

  14. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artificial Intelligence 55, 1–60 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pearl, J.: System Z: A natural ordering of defaults with tractable applications to nonmonotonic reasoning. In: Proc. of the 3rd Conf. on Theor. Asp. of Reasoning about Knowledge, TARK 1990, pp. 121–135. Morgan Kaufmann Publishers Inc., San Francisco (1990)

    Google Scholar 

  16. Spohn, W.: Ordinal conditional functions: a dynamic theory of epistemic states. In: Harper, W., Skyrms, B. (eds.) Causation in Decision, Belief Change, and Statistics, II, pp. 105–134. Kluwer Academic Publishers (1988)

    Google Scholar 

  17. Spohn, W.: The Laws of Belief: Ranking Theory and Its Philosophical Applications. Oxford University Press (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kern-Isberner, G., Beierle, C. (2015). A System Z-like Approach for First-Order Default Reasoning. In: Eiter, T., Strass, H., Truszczyński, M., Woltran, S. (eds) Advances in Knowledge Representation, Logic Programming, and Abstract Argumentation. Lecture Notes in Computer Science(), vol 9060. Springer, Cham. https://doi.org/10.1007/978-3-319-14726-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14726-0_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14725-3

  • Online ISBN: 978-3-319-14726-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics