Abstract
Deformation fields obtained from image registration are commonly used for deriving measurements of morphological changes between reference and follow-up images. As the underlying image matching problem is ill-posed, the exact shape of these deformation fields is often dependent on the regularization method. In longitudinal and cross-sectional studies this effect is amplified if time between acquisitions varies and smoothness between serial deformations is neglected. Existing solutions suffer from high computational costs, strong modeling assumptions and the bias towards a single reference image. In this paper, we propose a computationally efficient solution to this problem via a temporal smoothing formulation in the one-parameter subgroup of diffeomorphisms parametrized by stationary velocity fields. When applied to modeling fetal brain development, the proposed regularization results in smooth deformation fields over time and high data fidelity.
This research was supported by the Austian National Bank (14812, FETALMORPHO), the Austrian Science Fund (P 22578-B19, PULMARCH), and the European Union (FP7-ICT-2009-5/257528, KHRESMOI and FP7-ICT-2009-5/318068, VISCERAL)
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Scott, J.A., Habas, P.A., Kim, K., Rajagopalan, V., Hamzelou, K.S., Corbett-Detig, J.M., Barkovich, A.J., Glenn, O.A., Studholme, C.: International Journal of Developmental Neuroscience. International Journal of Developmental Neuroscience 29(5), 529–536 (2011)
Weiner, M.W., Veitch, D.P., Aisen, P.S., Beckett, L.A., Cairns, N.J., Green, R.C., Harvey, D., Jack, C.R., Jagust, W., Liu, E., Morris, J.C., Petersen, R.C., Saykin, A.J., Schmidt, M.E., Shaw, L., Siuciak, J.A., Soares, H., Toga, A.W., Trojanowski, J.Q., Initiative, A.D.N.: The Alzheimer’s Disease Neuroimaging Initiative: A review of papers published since its inception. Alzheimer’s & Dementia 8(S), S1–S68 (2012)
Rajagopalan, V., Scott, J., Habas, P.A., Kim, K., Corbett-Detig, J., Rousseau, F., Barkovich, A.J., Glenn, O.A., Studholme, C.: Local Tissue Growth Patterns Underlying Normal Fetal Human Brain Gyrification Quantified In Utero. Journal of Neuroscience 31(8), 2878–2887 (2011)
Dittrich, E., Raviv, T.R., Kasprian, G., Donner, R., Brugger, P.C., Prayer, D., Langs, G.: A spatio-temporal latent atlas for semi-supervised learning of fetal brain segmentations and morphological age estimation. Medical Image Analysis 18(1), 9–21 (2014)
Liu, W., Ribeiro, E.: A survey on image-based continuum-body motion estimation. Image and Vision Computing 29(8), 509–523 (2011)
Bauer, M., Bruveris, M., Michor, P.W.: Overview of the Geometries of Shape Spaces and Diffeomorphism Groups. arXiv.org (2013)
Vialard, F.X., Risser, L., Rueckert, D., Cotter, C.J.: Diffeomorphic 3D Image Registration via Geodesic Shooting Using an Efficient Adjoint Calculation. International Journal of Computer Vision 97(2), 229–241 (2011)
Niethammer, M., Huang, Y., Vialard, F.-X.: Geodesic regression for image time-series. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 655–662. Springer, Heidelberg (2011)
Hong, Y., Shi, Y., Styner, M., Sanchez, M., Niethammer, M.: Simple geodesic regression for image time-series. In: Dawant, B.M., Christensen, G.E., Fitzpatrick, J.M., Rueckert, D. (eds.) WBIR 2012. LNCS, vol. 7359, pp. 11–20. Springer, Heidelberg (2012)
Fletcher, P.T.: Geodesic Regression and the Theory of Least Squares on Riemannian Manifolds. International Journal of Computer Vision 105(2), 171–185 (2012)
Singh, N., Hinkle, J., Joshi, S., Fletcher, P.T.: A vector momenta formulation of diffeomorphisms for improved geodesic regression and atlas construction. In: Proceedings of the 2013 IEEE 10th International Symposium on Biomedical Imaging (ISBI), pp. 1219–1222 (2013)
Fishbaugh, J., Durrleman, S., Gerig, G.: Estimation of smooth growth trajectories with controlled acceleration from time series shape data. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 401–408. Springer, Heidelberg (2011)
Beg, M., Miller, M., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision 61(2), 139–157 (2005)
Trouvé, A., Vialard, F.X.: A second-order model for time-dependent data interpolation: Splines on shape spaces. Quaterly of Applied Mathematics 70(2), 219–251 (2012)
Davis, B.C., Fletcher, P.T., Bullitt, E., Joshi, S.: Population shape regression from random design data. In: Proc. of IEEE 11th International Conference on Computer Vision, pp. 1–7 (2007)
De Craene, M., Piella, G., Duchateau, N., Silva, E., Doltra, A., Gao, H., D’hooge, J., Camara, O., Brugada, J., Sitges, M., Frangi, A.F.: Temporal diffeomorphic free-form deformation for strain quantification in 3D-US images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part II. LNCS, vol. 6362, pp. 1–8. Springer, Heidelberg (2010)
Reuter, M., Schmansky, N.J., Rosas, H.D., Fischl, B.: Within-subject template estimation for unbiased longitudinal image analysis. NeuroImage 61(4), 1402–1418 (2012)
Guizard, N., Fonov, V.S., García-Lorenzo, D., Aubert-Broche, B., Eskildsen, S.F., Collins, D.L.: Spatio-temporal regularization for longitudinal registration to an unbiased 3D individual template. In: Durrleman, S., Fletcher, T., Gerig, G., Niethammer, M. (eds.) STIA 2012. LNCS, vol. 7570, pp. 1–12. Springer, Heidelberg (2012)
Wu, G., Wang, Q., Shen, D., Initiative, T.A.D.N.: Registration of longitudinal brain image sequences with implicit template and spatial-temporal heuristics. NeuroImage 59(1), 404–421 (2012)
Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A log-euclidean framework for statistics on diffeomorphisms. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 924–931. Springer, Heidelberg (2006)
Zhang, Z., Sahn, D., Song, X.: Frame to frame diffeomorphic motion analysis from echocardiographic sequences. In: Proceedings of the Third International Workshop on Mathematical Foundations of Computational Anatomy - Geometrical and Statistical Methods for Modelling Biological Shape Variability, pp. 15–24 (2011)
Hinkle, J., Muralidharan, P., Fletcher, P.T., Joshi, S.: Polynomial regression on riemannian manifolds. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 1–14. Springer, Heidelberg (2012)
Fishbaugh, J., Prastawa, M., Gerig, G., Durrleman, S.: Geodesic shape regression in the framework of currents. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 718–729. Springer, Heidelberg (2013)
Lorenzi, M., Ayache, N., Frisoni, G., Pennec, X.: 4D registration of serial brain’s MR images: a robust measure of changes applied to Alzheimer’s disease, 1–12 (2010)
Serag, A., Aljabar, P., Ball, G., Counsell, S.J., Boardman, J.P., Rutherford, M.A., Edwards, A.D., Hajnal, J.V., Rueckert, D.: Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression. NeuroImage 59(3), 2255–2265 (2012)
Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: Efficient non-parametric image registration. NeuroImage 45(1), S61–S72 (2009)
Bossa, M., Hernandez, M., Olmos, S.: Contributions to 3D diffeomorphic atlas estimation: application to brain images. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 667–674. Springer, Heidelberg (2007)
Myronenko, A., Song, X.: Intensity-based Image Registration by Minimizing Residual Complexity. IEEE Transactions on Medical Imaging (99), 1882–1891 (2010)
Lorenzi, M., Pennec, X.: Efficient parallel transport of deformations in time series of images: from Schild’s to pole ladder. Journal of Mathematical Imaging and Vision, 1–13 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Schwartz, E., Jakab, A., Kasprian, G., Zöllei, L., Langs, G. (2015). A Locally Linear Method for Enforcing Temporal Smoothness in Serial Image Registration. In: Durrleman, S., Fletcher, T., Gerig, G., Niethammer, M., Pennec, X. (eds) Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data. STIA 2014. Lecture Notes in Computer Science(), vol 8682. Springer, Cham. https://doi.org/10.1007/978-3-319-14905-9_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-14905-9_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-14904-2
Online ISBN: 978-3-319-14905-9
eBook Packages: Computer ScienceComputer Science (R0)