Skip to main content

A PTAS for the Metric Case of the Minimum Sum-Requirement Communication Spanning Tree Problem

  • Conference paper
Algorithms and Discrete Applied Mathematics (CALDAM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8959))

Included in the following conference series:

  • 1292 Accesses

Abstract

This work considers the metric case of the minimum sum-requirement communication spanning tree problem (SROCT), which is an NP-hard particular case of the minimum communication spanning tree problem (OCT). Given an undirected graph G = (V,E) with non-negative lengths ω(e) associated to the edges satisfying the triangular inequality and non-negative routing weights r(u) associated to nodes u ∈ V, the objective is to find a spanning tree T of G, that minimizes: \(\frac{1}{2}\sum_{u\in V}\sum_{v\in V}\left(r(u)+r(v)\right)d(T,u,v)\), where d(H,x,y) is the minimum distance between nodes x and y in a graph H ⊆ G. We present a polynomial approximation scheme for the metric case of the SROCT improving the until now best existing approximation algorithm for this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hu, T.C.: Optimum communication spanning trees. SIAM J. Comput. 3(3), 188–195 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  2. Wu, B.Y., Chao, K.M.: Spanning Trees and Optimization Problems. Chapman & Hall / CRC (2004) ISBN: 1584884363

    Google Scholar 

  3. Johnson, D.S., Lenstra, J.K., Rinnooy Kan, A.H.G.: The complexity of the network design problem. Networks 8, 279–285 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  4. Wu, B.Y., Lancia, G., Bafna, V., Chao, K.M., Ravi, R., Tang, C.Y.: A polynomial time approximation scheme for minimum routing cost spanning trees. SIAM J. on Computing 29(3), 761–778 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: Proceedings of the 37th Annual IEEE Symposium on Foundations of Computer Science, pp. 184–1963 (1996)

    Google Scholar 

  6. Talwar, K., Fakcharoenphol, J., Rao, S.: A tight bound on approximating arbitrary metrics by tree metrics. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing, pp. 448–455 (2003)

    Google Scholar 

  7. Wu, B.Y., Chao, K.M., Tang, C.Y.: Approximation algorithms for some optimum communication spanning tree problems. Discrete and Applied Mathematics 102, 245–266 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Wu, B.Y., Chao, K.M., Tang, C.Y.: A polynomial time approximation scheme for optimal product-requirement communication spanning trees. J. Algorithms 36, 182–204 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Farley, A.M., Fragopoulou, P., Krumme, D., Proskurowski, A., Richards, D.: Multi-source spanning tree problems. Journal of Interconnection Networks 1(1), 61–71 (2000)

    Article  Google Scholar 

  10. Wu, B.Y.: A polynomial time approximation scheme for the two-source minimum routing cost spanning trees. J. Algorithms 44, 359–378 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Orlin, B.J.: A faster strongly polynomial minimum cost flow algorithm. Operations Research 41(2), 338–350 (1993)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ravelo, S.V., Ferreira, C.E. (2015). A PTAS for the Metric Case of the Minimum Sum-Requirement Communication Spanning Tree Problem. In: Ganguly, S., Krishnamurti, R. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2015. Lecture Notes in Computer Science, vol 8959. Springer, Cham. https://doi.org/10.1007/978-3-319-14974-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14974-5_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14973-8

  • Online ISBN: 978-3-319-14974-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics